[PDF] Ultra Compact Ans Sensitive Terahertz Heterodyne Receiver Based On Quantum Cascade Laser And Hot Electron Bolometer eBook

Ultra Compact Ans Sensitive Terahertz Heterodyne Receiver Based On Quantum Cascade Laser And Hot Electron Bolometer Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Ultra Compact Ans Sensitive Terahertz Heterodyne Receiver Based On Quantum Cascade Laser And Hot Electron Bolometer book. This book definitely worth reading, it is an incredibly well-written.

Ultra Compact Ans Sensitive Terahertz Heterodyne Receiver Based on Quantum Cascade Laser and Hot Electron Bolometer

Author : François Joint
Publisher :
Page : 157 pages
File Size : 40,63 MB
Release : 2018
Category :
ISBN :

GET BOOK

We demonstrate an ultra-compact Terahertz (THz) heterodyne detec- tion system based on a quantum cas- cade laser (QCL) as local oscillator and a hot electron bolometer (HEB) for the mixing. It relies on a new opti- cal coupling scheme where the local oscillator signal is coupled through the air side of the planar HEB an- tenna, while the signal to be de- tected is coupled to the HEB through the lens. This technique allows us to suppress the beam splitter usu- ally employed for heterodyne mea- surements. The mixer is a Niobium Nitride HEB with a log-spiral planar antenna on silicon and mounted on the back of a plano-convex silicon lens. We have developed a low power consumption and low beam di- vergence 3rd-order distributed feed- back laser with single mode emis- sion at the target frequency of 2.7 THz to be used as local oscillator for the heterodyne receiver. The cou- pling between the QC laser and the the HEB has been further optimized, using a dielectric hollow waveguide that reliably increases the laser beam directivity up to 55 dBi. Upon the high beam quality, sufficient output power in a single mode at the tar- geted frequency and low power dissi- pation of our local oscillator, we have build an ultra compact THz hetero- dyne receiver with sensitivity close to the state of the art at 2.7 THz.

Spectroscopic Applications of Terahertz Quantum-Cascade Lasers

Author : Tasmim Alam
Publisher : Cuvillier Verlag
Page : 132 pages
File Size : 33,51 MB
Release : 2020-10-29
Category : Science
ISBN : 3736962975

GET BOOK

Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.

Terahertz Multiheterodyne Spectroscopy Using Laser Frequency Combs

Author :
Publisher :
Page : 4 pages
File Size : 28,11 MB
Release : 2014
Category :
ISBN :

GET BOOK

The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 [mu]s. As a proof of principle, we use these combs to measure the broadband transmission spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.

Integrated Heterodyne Terahertz Transceiver

Author :
Publisher :
Page : pages
File Size : 22,29 MB
Release : 2012
Category :
ISBN :

GET BOOK

A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

Terahertz Generation with Quantum Cascade Lasers

Author : Karun Vijayraghavan
Publisher :
Page : 226 pages
File Size : 41,17 MB
Release : 2014
Category :
ISBN :

GET BOOK

The terahertz (THz) spectral range is devoid of commercially feasible radiation sources, detectors, and components. In particular, THz sources are bulky, complex to operate, and cost-prohibitive - more suited for a research laboratory than a commercial setting. Developing compact and mass-producible sources in the 1 to 6 THz spectral range will open up new avenues for this technology to make a mainstream societal impact. The focus of this thesis is the development of compact, room-temperature terahertz sources based on quantum cascade lasers (QCL) and quantum well technology. QCLs are semiconductor lasers that operate with high power at mid-infrared (mid-IR) and THz frequencies. THz QCLs are the only mW-level average power sources with spectral coverage from 0.8 to 5 THz. However they only work at cryogenic temperatures because they cannot maintain population inversion across the lasing transition at elevated temperatures. Cryogenic cooling makes these sources cumbersome to operate and expensive to manufacture. Room-temperature operation significantly enhances their commercial appeal and a portion of this dissertation investigated the improvement in THz QCL temperature performance using GaAs-Al0.15Ga0.85As double-phonon resonant active region designs. These devices worked up to 173 K and were a substantial improvement compared to prior implementations of double-phonon resonant designs. Room-temperature THz sources that do not require population inversion across the lasing transition can be engineered by combining the field of nonlinear optics with intersubband transitions in quantum well structures. One method of creating inversionless THz lasing is based upon the principle of Raman gain in semiconductors and this thesis explores the design of an intersubband Raman laser (IRL) with GaAs-Al0.33Ga0.67As heterostructures. The primary focus of this dissertation is developing room-temperature, broadly-tunable, monolithic THz sources based on difference-frequency generation (DFG) in mid-IR QCLs. The source active region is quantum-engineered to provide lasing at mid-IR frequencies, [omega]1 and [omega]2, and simultaneously have giant second-order optical nonlinearity for THz generation at frequency [omega] [subscript THz]=[omega]1-[omega]2. This dissertation developed a Cherenkov emission scheme that produced devices with a narrow emission linewidth, 0.12 mW peak power and tuning from 1.55 to 5.7 THz - the largest tuning bandwidth compared to semiconductor technology of similar size and cost.

New Widely Tunable Room-Temperature Terahertz Coherent Sources

Author :
Publisher :
Page : 13 pages
File Size : 46,94 MB
Release : 2008
Category :
ISBN :

GET BOOK

The objective of this proposal was to develop a new type of THz semiconductor sources that are injection-pumped, efficient, compact, narrowband, tunable, and can operate at room temperature. The proposed device was a mid-infrared InGaAs/AlInAs Quantum Cascade Laser (QCLs) with the waveguide core containing a multi-functional coupled-quantum-well active region that supports both laser action in the mid-infrared and THz generation due to resonant coherent beating of two laser modes. During the course of the work a path was also found to substantially improve the temperature performance and directionality of conventional THz QCLs in which an electronic transition is used for the direct generation of THz radiation. The following was accomplished: first room temperature operation of an elctrically pumped quantum cascade laser based THz source, using intra-cavity nonlinear optics; record operating temperature (180K) of a conventional THz Quantum Cascade Laser, using a copper double metal waveguide for low loss; surface emitting THz QCLs with low beam divergence.

Terahertz Local Oscillator Via Difference Frequency Generation in III-V Semiconductors Using Frequency Stabilized Lasers

Author : Greg Herman
Publisher :
Page : 154 pages
File Size : 36,50 MB
Release : 2013
Category :
ISBN :

GET BOOK

Terahertz (THz) heterodyne receiver systems are required by NASA to monitor gas concentrations related to the Earth's ozone depletion. To this end, NASA needs compact, solid state, tunable THz local oscillators. THz LOs have been developed using three means: 1) All-electronic LOs using mixers in combination with Gunn oscillators, 2) Hybrid Photo-electronic LOs using a cw analog of the Auston switch, and 3) All-photonic THz LOs using coherent sources, such as vapor lasers or solid-state Quantum Cascade Lasers, and down converting lasers using nonlinear crystals. In this dissertation, we began with two frequency stabilized Nd:YAG lasers, locked to a common reference cavity, as a starting point to having a stable input into a nonlinear optical frequency conversion system. Following this, we explored the nonlinear crystals useful for THz generation, and the phasematching schemes that could be employed by each. We concluded by settling on highly insulating III-V semiconductor crystals as the proper choice of nonlinear element, and put together a new phasematching method that is most useful for them.