[PDF] The Design Of A Large Booster Ring For The Medium Energy Electron Ion Collider At Jlab eBook

The Design Of A Large Booster Ring For The Medium Energy Electron Ion Collider At Jlab Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of The Design Of A Large Booster Ring For The Medium Energy Electron Ion Collider At Jlab book. This book definitely worth reading, it is an incredibly well-written.

The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

Author :
Publisher :
Page : pages
File Size : 31,88 MB
Release : 2012
Category :
ISBN :

GET BOOK

In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

Author :
Publisher :
Page : 160 pages
File Size : 32,60 MB
Release : 2012
Category :
ISBN :

GET BOOK

Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 1034 cm−2s−1 per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 1034 cm−2s−1 at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R & D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.

Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab

Author :
Publisher :
Page : pages
File Size : 34,60 MB
Release : 2013
Category :
ISBN :

GET BOOK

The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

An Accumulator/Pre-Booster for the Medium-Energy Electron Ion Collider at Jlab

Author :
Publisher :
Page : 3 pages
File Size : 38,7 MB
Release : 2011
Category :
ISBN :

GET BOOK

Future nuclear physics facilities such as the proposed electron ion collider (MEIC) will need to achieve record high luminosities in order to maximize discovery potential. Among the necessary ingredients is the ability to generate, accumulate, accelerate, and store high current ion beams from protons to lead ions. One of the main components of this ion accelerator complex for MEIC chain is the accumulator that also doubles as a pre-booster, which takes 200 MeV protons from a superconducting linear accelerator, accumulates on the order of 1A beam, and boosts its energy to 3GeV, before extraction to the next accelerator in the chain, the large booster. This paper describes its design concepts, and summarizes some preliminary results, including linear optics, space charge dynamics, and spin polarization resonance analysis.

Progress on the Design of the Polarized Medium-Energy Electron Ion Collider at Jlab

Author :
Publisher :
Page : 6 pages
File Size : 44,32 MB
Release : 2015
Category :
ISBN :

GET BOOK

The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

Three-dimensional Partonic Structure of the Nucleon

Author : Mauro Anselmino
Publisher : IOS Press
Page : 392 pages
File Size : 48,25 MB
Release : 2012
Category : Science
ISBN : 1614991960

GET BOOK

The three-dimensional nucleon structure is central to many theoretical and experimental activities, and research in this field has seen many advances in the last two decades, addressing fundamental questions such as the orbital motion of quarks and gluons inside the nucleons, their spatial distribution, and the correlation between spin and intrinsic motion. A real three-dimensional imaging of the nucleon as a composite object, both in momentum and coordinate space, is slowly emerging.This book presents lectures and seminars from the Enrico Fermi School Three-Dimensional Partonic Structure of the Nucleon, held in Varenna,

Exclusive Reactions at High Momentum Transfer IV

Author : Anatoly Radyushkin
Publisher : World Scientific
Page : 486 pages
File Size : 13,85 MB
Release : 2011
Category : Science
ISBN : 981432955X

GET BOOK

The Proceedings include talks given at the 4th Workshop on Exclusive Reactions at High Momentum Transfer at Jefferson Lab, Newport News, VA USA, the world's leading facility performing research on nuclear, hadronic and quark-gluon structure of matter. Exclusive reactions are becoming one of the major sources of information about the deep structure of the nucleons and other hadrons. The workshop focused on the application of a variety of exclusive reactions at high momentum transfer, utilizing unpolarized and polarized beams and targets, to obtain information about nucleon ground state and excited state structure at short distances. This is a subject which is central to the programs of current accelerators and especially planned future facilities. The topics include: generalized parton distributions, deeply virtual Compton scattering, deeply virtual meson production (DVMP), transverse structure of hadrons (TMD), hadron form factors ? elastic and transition, quantum chromodynamics (perturbative, non-perturbative, lattice calculations), and physics to study at an Electron Ion Collider.

Status of the MEIC Ion Collider Ring Design

Author :
Publisher :
Page : pages
File Size : 34,34 MB
Release : 2015
Category :
ISBN :

GET BOOK

We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

Update on the Meic Electron Collider Ring Design

Author :
Publisher :
Page : 3 pages
File Size : 35,11 MB
Release : 2015
Category :
ISBN :

GET BOOK

The electron collider ring of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab is designed to accumulate and store a high-current polarized electron beam for collisions with an ion beam. We consider a design of the electron collider ring based on reusing PEPII components, such as magnets, power supplies, vacuum system, etc. This has the potential to significantly reduce the cost and engineering effort needed to bring the project to fruition. This paper reports on an electron ring optics design considering the balance of PEP-II hardware parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and electron beam quality in terms of equilibrium emittances.