[PDF] State Of The Art Of Molecular Electronic Structure Computations Correlation Methods Basis Sets And More eBook

State Of The Art Of Molecular Electronic Structure Computations Correlation Methods Basis Sets And More Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of State Of The Art Of Molecular Electronic Structure Computations Correlation Methods Basis Sets And More book. This book definitely worth reading, it is an incredibly well-written.

State of The Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More

Author :
Publisher : Academic Press
Page : 360 pages
File Size : 10,12 MB
Release : 2019-09-07
Category : Science
ISBN : 0128161752

GET BOOK

State of the Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More, Volume 79 in the Advances in Quantum Chemistry series, presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. Chapters in this new release include Computing accurate molecular properties in real space using multiresolution analysis, Self-consistent electron-nucleus cusp correction for molecular orbitals, Correlated methods for computational spectroscopy, Potential energy curves for the NaH molecule and its cation with the cock space coupled cluster method, and much more. Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology Features detailed reviews written by leading international researchers

Molecular Electronic-Structure Theory

Author : Trygve Helgaker
Publisher : John Wiley & Sons
Page : 949 pages
File Size : 30,26 MB
Release : 2014-08-11
Category : Science
ISBN : 1119019559

GET BOOK

Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.

Basis Sets in Computational Chemistry

Author : Eva Perlt
Publisher : Springer Nature
Page : 255 pages
File Size : 32,96 MB
Release : 2021-05-06
Category : Science
ISBN : 303067262X

GET BOOK

This book addresses the construction and application of the major types of basis sets for computational chemistry calculations. In addition to a general introduction, it includes mathematical basics and a discussion of errors arising from incomplete or inappropriate basis sets. The different chapters introduce local orbitals and orbital localization as well as Slater-type orbitals and review basis sets for special applications, such as those for correlated methods, solid-state calculations, heavy atoms and time-dependent adaptable Gaussian bases for quantum dynamics simulations. This detailed review of the purpose of basis sets, their design, applications, possible problems and available solutions provides graduate students and beginning researchers with information not easily obtained from the available textbooks and offers valuable supporting material for any quantum chemistry or computational chemistry course at the graduate and/or undergraduate level. This book is also useful as a guide for researchers who are new to computational chemistry but are willing to extend their research tools by applying such methods.

Advanced Theories and Computational Approaches to the Electronic Structure of Molecules

Author : C.E. Dykstra
Publisher : Springer Science & Business Media
Page : 241 pages
File Size : 28,88 MB
Release : 2012-12-06
Category : Science
ISBN : 940096451X

GET BOOK

That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi lity of computers have let theorists apply their methods to prob lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com plete information on molecular properties. We can surely anticipate continued methodological develop ments of real consequence, and we can also see that the advance in computational capability is not about to slow down. The recent introduction of array processors, mUltiple processors and vector machines has yielded a tremendous acceleration of many types of computation, including operations typically performed in quantum chemical studies. Utilizing such new computing power to the ut most has required some new ideas and some reformulations of existing methods.

Methods of Electronic Structure Theory

Author : Henry F. Schaefer
Publisher : Springer Science & Business Media
Page : 476 pages
File Size : 26,98 MB
Release : 2013-06-29
Category : Science
ISBN : 1475708874

GET BOOK

These two volumes deal with the quantum theory of the electronic structure of molecules. Implicit in the term ab initio is the notion that approximate solutions of Schrödinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In asense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those develop ing new theoretical and computational methods and models. Henry F Schaefer Vll Contents Contents of Volume 4 XIX Chapter 1. Gaussian Basis Sets for Molecular Calculations Thom. H. Dunning, Ir. and P. Ieffrey Hay 1. Introduction . . . . . . . . . . . . . . . . 1 1. 1. Slater Functions and the Hydrogen Moleeule 1 1. 2. Gaussian Functions and the Hydrogen Atom 3 2. Hartree-Fock Calculations on the First Row Atoms 5 2. 1. Valence States of the First Row Atoms 6 7 2. 2. Rydberg States of the First Row Atoms 9 2. 3.

Electron Correlation Methodology

Author : Angela K. Wilson
Publisher :
Page : 236 pages
File Size : 38,80 MB
Release : 2007
Category : Language Arts & Disciplines
ISBN :

GET BOOK

Modeling is becoming a significant component in the design and analysis of chemical systems in areas such as catalysis, nanomaterials, and biological systems. With rapidly advancing technology, there is an increasing need to model molecules that are quite large and complex, and to model such systems with reasonable accuracy. However, computational methods are generally more numerous and reliable for lighter, smaller molecules since calculations on smaller molecules are less computationally demanding than for larger molecules, and can take advantage of high accuracy, but prohibitively expensive, computational approaches. Two widely used approaches for chemical modeling are ab initio correlated methods and density functional theory. Though there is great interest in using these methods for high accuracy calculations on increasingly larger and more complex chemical systems, each approach currently has limitations. Ab initio methods suffer from a high "N-scaling" problem, where the N-scaling represents the computational cost (memory, disk space, and time requirements of the calculations), thus making high accuracy calculations. Density functional methods have a much lower N-scaling, and thus calculations can be done on much larger molecules. Unfortunately, density functional calculations are generally not as reliable as ab initio approaches, and sometimes, at best can only provide a qualitative description of properties of interest. This volume brings together researchers from throughout the world to assess recent progress in the field of electronic structure methodology, focusing upon ab initio and density functional developments, and to discuss future direction. This publication will impact a number of fields including computational chemistry, organic chemistry, and inorganic chemistry. It will help to provide a closer commonality of ab initio and density functional approaches, as it brings together many of the top senior and junior scientists in both fields to address a common problem: high accuracy modeling of larger chemical systems.

Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules

Author : M. Defranceschi
Publisher : Springer Science & Business Media
Page : 360 pages
File Size : 36,34 MB
Release : 2012-12-06
Category : Science
ISBN : 9400923295

GET BOOK

Quantum mechanical calculations in physics, chemistry and biology are widely recognized as useful interpretative and predictive tools. Unfortunately, they are plagued by unfavorable convergence limitations due to the use of finite linear combinations of basis functions. With the current computer technologies, there is a possible way out to the situation by solving numerically the corresponding wave equations. The present interest and need for numerical determination of electronic structure of atoms, diatomic and poly atomic molecules led us to organize a NATO-ARW devoted to these questions. The aim of the meeting was to provide a review of the state of the art about techniques and applications. The organizing committee consisted of Drs. G. Berthier, P. Claverie, M. Defranceschi, J. Delhalle, H.J. Monkhorst and P. Pyykk6. It was a great sorrow for us to be informed in January 88 of the death of Professor P. Claverie who supported so enthusiastically the idea of having such a meeting organized. The NATO Advanced Research Worshop on : " Numerical Determination of the Electronic Structure of Atoms, Diatomic and Poly atomic Molecules" was held at Versailles (France) from April 17th till April 22th, 1988.

Methods in Computational Molecular Physics

Author : Stephen Wilson
Publisher : Springer Science & Business Media
Page : 554 pages
File Size : 27,22 MB
Release : 2013-11-11
Category : Science
ISBN : 1461574196

GET BOOK

This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysis and interstellar chernistry, drug design and environmental studies, molecular biology and solid state physics. The range of applications continues to increase as scientists recognize the importance of molecular structure studies to their research activities. Recent years have seen a growing dependence of these applications on program packages, which are often not in the public domain and which may have a somewhat lirnited range of applicability dicta ted by the particular interests and prejudices of the program author.

Quantum Chemistry

Author : Henry F. Schaefer III
Publisher : Courier Corporation
Page : 180 pages
File Size : 45,30 MB
Release : 2012-11-14
Category : Science
ISBN : 0486151417

GET BOOK

For each of 150 landmark papers in ab initio molecular electronic structure methods, the author provides a lucid commentary that focuses on methodology, rather than particular chemical problems. 1984 edition.

Electron Correlation in Molecules

Author : S. Wilson
Publisher : Courier Corporation
Page : 305 pages
File Size : 20,87 MB
Release : 2014-07-01
Category : Science
ISBN : 0486150224

GET BOOK

Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules. Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equations from first principles is to provide an accurate quantitative prediction, reliable techniques for the theoretical determination of the effect of electron correlation on molecular properties are therefore important. To that end, this text explores molecular electronic structure, independent electron models, electron correlation, the linked diagram theorem, group theoretical aspects, the algebraic approximation, and truncation of expansions for expectation values.