[PDF] Solution Techniques For Large Scale Cfd Problems eBook

Solution Techniques For Large Scale Cfd Problems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Solution Techniques For Large Scale Cfd Problems book. This book definitely worth reading, it is an incredibly well-written.

Solution Techniques for Large-scale CFD Problems

Author : Wagdi G. Habashi
Publisher : Wiley
Page : 454 pages
File Size : 20,54 MB
Release : 1995-08-29
Category : Science
ISBN : 9780471958109

GET BOOK

Current CFD problems of interest are typically of a large-scalenature, characterized by a size and complexity demanding thecombined efforts of interdisciplinary teams from engineering,mathematics, computer science and physics. This book thus groups aprestigious cross-section of internationally known scientistsinvited to expound on the following themes: * Algorithms for vector, parallel and virtual-parallelarchitectures * Algorithms for massively parallel architectures * Convergence enhancement techniques, namely preconditionedinterative methods for implicit or fully-coupled approaches * Convergence enhancement techniques, such as defect correction,multigrid, formulation preconditioning and zonal methods * Application of these techniques to large-scale CFD analysis anddesign. This book should prove equally valuable for CFD developers,practitioners and graduate students.

High-Resolution Methods for Incompressible and Low-Speed Flows

Author : D. Drikakis
Publisher : Springer Science & Business Media
Page : 623 pages
File Size : 26,95 MB
Release : 2005-08-02
Category : Science
ISBN : 354026454X

GET BOOK

The study of incompressible ?ows is vital to many areas of science and te- nology. This includes most of the ?uid dynamics that one ?nds in everyday life from the ?ow of air in a room to most weather phenomena. Inundertakingthesimulationofincompressible?uid?ows,oneoftentakes many issues for granted. As these ?ows become more realistic, the problems encountered become more vexing from a computational point-of-view. These range from the benign to the profound. At once, one must contend with the basic character of incompressible ?ows where sound waves have been analytically removed from the ?ow. As a consequence vortical ?ows have been analytically “preconditioned,” but the ?ow has a certain non-physical character (sound waves of in?nite velocity). At low speeds the ?ow will be deterministic and ordered, i.e., laminar. Laminar ?ows are governed by a balance between the inertial and viscous forces in the ?ow that provides the stability. Flows are often characterized by a dimensionless number known as the Reynolds number, which is the ratio of inertial to viscous forces in a ?ow. Laminar ?ows correspond to smaller Reynolds numbers. Even though laminar ?ows are organized in an orderly manner, the ?ows may exhibit instabilities and bifurcation phenomena which may eventually lead to transition and turbulence. Numerical modelling of suchphenomenarequireshighaccuracyandmostimportantlytogaingreater insight into the relationship of the numerical methods with the ?ow physics.

Parallel Solution of Partial Differential Equations

Author : Petter Bjorstad
Publisher : Springer Science & Business Media
Page : 309 pages
File Size : 12,93 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 146121176X

GET BOOK

This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.

Computational Methods for Fluid Dynamics

Author : Joel H. Ferziger
Publisher : Springer
Page : 596 pages
File Size : 48,4 MB
Release : 2019-08-16
Category : Technology & Engineering
ISBN : 3319996932

GET BOOK

This book is a guide to numerical methods for solving fluid dynamics problems. The most widely used discretization and solution methods, which are also found in most commercial CFD-programs, are described in detail. Some advanced topics, like moving grids, simulation of turbulence, computation of free-surface flows, multigrid methods and parallel computing, are also covered. Since CFD is a very broad field, we provide fundamental methods and ideas, with some illustrative examples, upon which more advanced techniques are built. Numerical accuracy and estimation of errors are important aspects and are discussed in many examples. Computer codes that include many of the methods described in the book can be obtained online. This 4th edition includes major revision of all chapters; some new methods are described and references to more recent publications with new approaches are included. Former Chapter 7 on solution of the Navier-Stokes equations has been split into two Chapters to allow for a more detailed description of several variants of the Fractional Step Method and a comparison with SIMPLE-like approaches. In Chapters 7 to 13, most examples have been replaced or recomputed, and hints regarding practical applications are made. Several new sections have been added, to cover, e.g., immersed-boundary methods, overset grids methods, fluid-structure interaction and conjugate heat transfer.

Krylov Solvers for Linear Algebraic Systems

Author : Charles George Broyden
Publisher : Elsevier
Page : 343 pages
File Size : 46,8 MB
Release : 2004-09-08
Category : Mathematics
ISBN : 0080478875

GET BOOK

The first four chapters of this book give a comprehensive and unified theory of the Krylov methods. Many of these are shown to be particular examples ofthe block conjugate-gradient algorithm and it is this observation thatpermits the unification of the theory. The two major sub-classes of thosemethods, the Lanczos and the Hestenes-Stiefel, are developed in parallel asnatural generalisations of the Orthodir (GCR) and Orthomin algorithms. Theseare themselves based on Arnoldi's algorithm and a generalised Gram-Schmidtalgorithm and their properties, in particular their stability properties,are determined by the two matrices that define the block conjugate-gradientalgorithm. These are the matrix of coefficients and the preconditioningmatrix.In Chapter 5 the"transpose-free" algorithms based on the conjugate-gradient squared algorithm are presented while Chapter 6 examines the various ways in which the QMR technique has been exploited. Look-ahead methods and general block methods are dealt with in Chapters 7 and 8 while Chapter 9 is devoted to error analysis of two basic algorithms.In Chapter 10 the results of numerical testing of the more important algorithms in their basic forms (i.e. without look-ahead or preconditioning) are presented and these are related to the structure of the algorithms and the general theory. Graphs illustrating the performances of various algorithm/problem combinations are given via a CD-ROM.Chapter 11, by far the longest, gives a survey of preconditioning techniques. These range from the old idea of polynomial preconditioning via SOR and ILU preconditioning to methods like SpAI, AInv and the multigrid methods that were developed specifically for use with parallel computers. Chapter 12 is devoted to dual algorithms like Orthores and the reverse algorithms of Hegedus. Finally certain ancillary matters like reduction to Hessenberg form, Chebychev polynomials and the companion matrix are described in a series of appendices. · comprehensive and unified approach· up-to-date chapter on preconditioners· complete theory of stability· includes dual and reverse methods· comparison of algorithms on CD-ROM· objective assessment of algorithms

Adaptive High-order Methods In Computational Fluid Dynamics

Author : Zhi Jian Wang
Publisher : World Scientific
Page : 471 pages
File Size : 40,13 MB
Release : 2011-03-24
Category : Science
ISBN : 9814464694

GET BOOK

This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.

Parallel Computational Fluid Dynamics '98

Author : Chiao-ling Lin
Publisher : Elsevier
Page : 549 pages
File Size : 14,19 MB
Release : 1999-05-26
Category : Mathematics
ISBN : 0080538398

GET BOOK

This book contains the papers presented at the Parallel Computational Fluid Dynamics 1998 Conference. The book is focused on new developments and applications of parallel technology. Key topics are introduced through contributed papers and invited lectures. These include typical algorithmic developments, such as: distributed computing, domain decomposition and parallel algorithm. Some of the papers address the evaluations of software and machine performance and software tool environments. The application of parallel computers to complex fluid dynamics problems are also conveyed through sessions such as DNS/LES, combustion and reacting flows, industrial applications, water resources and environmental flows. The editors believe this book will provide many researchers, much beyond those contributing to this volume, with fresh information and reference.