[PDF] Optimizing Thermal Chemical And Environmental Systems eBook

Optimizing Thermal Chemical And Environmental Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Optimizing Thermal Chemical And Environmental Systems book. This book definitely worth reading, it is an incredibly well-written.

Optimizing Thermal, Chemical, and Environmental Systems

Author : Stanislaw Sieniutycz
Publisher : Elsevier
Page : 454 pages
File Size : 35,46 MB
Release : 2017-11-13
Category : Science
ISBN : 0128135832

GET BOOK

Optimizing Thermal, Chemical and Environmental Systems treats the evaluation of power or energy limits for processes that arise in various thermal, chemical and environmental engineering systems (heat and mass exchangers, power converters, recovery units, solar collectors, mixture separators, chemical reactors, catalyst regenerators, etc.). The book is an indispensable source for researchers and students, providing the necessary information on what has been achieved to date in the field of process optimization, new research problems, and what kind of further studies should be developed within quite specialized optimizations. Summarizes recent achievements of advanced optimization techniques Links exergy definitions in reversible systems with classical problems of extremum work Includes practical problems and illustrative examples to clarify applications Provides a unified description of classical and work-assisted heat and mass exchangers Written by a first-class expert in the field of advanced methods in thermodynamics

Introduction to Optimization for Chemical and Environmental Engineers

Author : Louis Theodore
Publisher : CRC Press
Page : 333 pages
File Size : 36,67 MB
Release : 2018-07-20
Category : Science
ISBN : 1351037366

GET BOOK

"The authors—a chemical engineer and a civil engineer—have complimented each other in delivering an introductory text on optimization for engineers of all disciplines. It covers a host of topics not normally addressed by other texts. Although introductory in nature, it is a book that will prove invaluable to me and my staff, and belongs on the shelves of practicing environmental and chemical engineers. The illustrative examples are outstanding and make this a unique and special book." —John D. McKenna, Ph.D., Principal, ETS, Inc., Roanoke, Virginia "The authors have adeptly argued that basic science courses—particularly those concerned with mathematics—should be taught to engineers by engineers. Also, books adopted for use in such courses should also be written by engineers. The readers of this book will acquire an understanding and appreciation of the numerous mathematical methods that are routinely employed by practicing engineers. Furthermore, this introductory text on optimization attempts to address a void that exists in college engineering curricula. I recommend this book without reservation; it is a library ‘must’ for engineers of all disciplines." —Kenneth J. Skipka, RTP Environmental Associates, Inc., Westbury, NY, USA Introduction to Optimization for Chemical and Environmental Engineers presents the introductory fundamentals of several optimization methods with accompanying practical engineering applications. It examines mathematical optimization calculations common to both environmental and chemical engineering professionals, with a primary focus on perturbation techniques, search methods, graphical analysis, analytical methods, linear programming, and more. The book presents numerous illustrative examples laid out in such a way as to develop the reader’s technical understanding of optimization, with progressively difficult examples located at the end of each chapter. This book serves as a training tool for students and industry professionals alike. FEATURES Examines optimization concepts and methods used by environmental and chemical engineering practitioners. Presents solutions to real-world scenarios/problems at the end of each chapter. Offers a pragmatic approach to the application of mathematical tools to assist the reader in grasping the role of optimization in engineering problem-solving situations. Provides numerous illustrative examples. Serves as a text for introductory courses, or as a training tool forindustry professionals.

Optimization in Chemical Engineering

Author : Suman Dutta
Publisher : Cambridge University Press
Page : 384 pages
File Size : 29,8 MB
Release : 2016-03-11
Category : Technology & Engineering
ISBN : 1316691799

GET BOOK

Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.

Complexity and Complex Thermo-Economic Systems

Author : Stanislaw Sieniutycz
Publisher : Elsevier
Page : 415 pages
File Size : 46,83 MB
Release : 2019-11-24
Category : Computers
ISBN : 0128185953

GET BOOK

Complexity and Complex Thermoeconomic Systems describes the properties of complexity and complex thermo-economic systems as the consequence of formulations, definitions, tools, solutions and results consistent with the best performance of a system. Applying to complex systems contemporary advanced techniques, such as static optimization, optimal control, and neural networks, this book treats the systems theory as a science of general laws for functional integrities. It also provides a platform for the discussion of various definitions of complexity, complex hierarchical structures, self-organization examples, special references, and historical issues. This book is a valuable reference for scientists, engineers and graduated students in chemical, mechanical, and environmental engineering, as well as those in physics, ecology and biology, helping them better understand the complex thermodynamic systems and enhance their technical skills in research. Provides a lucid presentation of the dynamical properties of thermoeconomic systems Includes original graphical material that illustrates the properties of complex systems Written by a first-class expert in the field of advanced methods in thermodynamics

Multi-Objective Optimization in Chemical Engineering

Author : Gade Pandu Rangaiah
Publisher : John Wiley & Sons
Page : 487 pages
File Size : 25,53 MB
Release : 2013-03-20
Category : Science
ISBN : 1118341686

GET BOOK

For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, pharmaceutical, energy and related processes. It then covers important theoretical and computational developments as well as specific applications such as metabolic reaction networks, chromatographic systems, CO2 emissions targeting for petroleum refining units, ecodesign of chemical processes, ethanol purification and cumene process design. Multi-Objective Optimization in Chemical Engineering: Developments and Applications is an invaluable resource for researchers and graduate students in chemical engineering as well as industrial practitioners and engineers involved in process design, modeling and optimization.

Thermal System Optimization

Author : Vivek K. Patel
Publisher : Springer
Page : 477 pages
File Size : 20,45 MB
Release : 2019-02-14
Category : Science
ISBN : 303010477X

GET BOOK

This book presents a wide-ranging review of the latest research and development directions in thermal systems optimization using population-based metaheuristic methods. It helps readers to identify the best methods for their own systems, providing details of mathematical models and algorithms suitable for implementation. To reduce mathematical complexity, the authors focus on optimization of individual components rather than taking on systems as a whole. They employ numerous case studies: heat exchangers; cooling towers; power generators; refrigeration systems; and others. The importance of these subsystems to real-world situations from internal combustion to air-conditioning is made clear. The thermal systems under discussion are analysed using various metaheuristic techniques, with comparative results for different systems. The inclusion of detailed MATLAB® codes in the text will assist readers—researchers, practitioners or students—to assess these techniques for different real-world systems. Thermal System Optimization is a useful tool for thermal design researchers and engineers in academia and industry, wishing to perform thermal system identification with properly optimized parameters. It will be of interest for researchers, practitioners and graduate students with backgrounds in mechanical, chemical and power engineering.

Complexity and Complex Chemo-Electric Systems

Author : Stanislaw Sieniutycz
Publisher : Elsevier
Page : 324 pages
File Size : 14,75 MB
Release : 2021-02-09
Category : Technology & Engineering
ISBN : 0128236361

GET BOOK

Complexity and Complex Chemo-Electric Systems presents an analysis and synthesis of chemo-electric systems, providing insights on transports in electrolytes, electrode reactions, electrocatalysis, electrochemical membranes, and various aspects of heterogeneous systems and electrochemical engineering. The book describes the properties of complexity and complex chemo-electric systems as the consequence of formulations, definitions, tools, solutions and results that are often consistent with the best performance of the system. The book handles cybernetics, systems theory and advanced contemporary techniques such as optimal control, neural networks and stochastic optimizations (adaptive random search, genetic algorithms, and simulated annealing). A brief part of the book is devoted to issues such as various definitions of complexity, hierarchical structures, self-organization examples, special references, and historical issues. This resource complements Sieniutycz’ recently published book, Complexity and Complex Thermodynamic Systems, with its inclusion of complex chemo-electric systems in which complexities, emergent properties and self-organization play essential roles. Covers the theory and applications of complex chemo-electric systems through modeling, analysis, synthesis and optimization Provides a clear presentation of the applications of transport theory to electrolyte solutions, heterogeneous electrochemical systems, membranes, electro-kinetic phenomena and interface processes Includes numerous explanatory graphs and drawings that illustrate the properties and complexities in complex chemo-electric systems Written by an experienced expert in the field of advanced methods in thermodynamics and related aspects of macroscopic physics

Energy Optimization in Process Systems

Author : Stanislaw Sieniutycz
Publisher : Elsevier
Page : 771 pages
File Size : 26,70 MB
Release : 2009-05-06
Category : Technology & Engineering
ISBN : 008091442X

GET BOOK

Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions

Design and Optimization of Thermal Systems

Author : Yogesh Jaluria
Publisher : CRC Press
Page : 753 pages
File Size : 28,11 MB
Release : 2007-12-13
Category : Science
ISBN : 1420019481

GET BOOK

Thermal systems play an increasingly symbiotic role alongside mechanical systems in varied applications spanning materials processing, energy conversion, pollution, aerospace, and automobiles. Responding to the need for a flexible, yet systematic approach to designing thermal systems across such diverse fields, Design and Optimization of Thermal

Thermal Design and Optimization

Author : Adrian Bejan
Publisher : John Wiley & Sons
Page : 562 pages
File Size : 15,85 MB
Release : 1995-12-12
Category : Technology & Engineering
ISBN : 9780471584674

GET BOOK

A comprehensive and rigorous introduction to thermal system designfrom a contemporary perspective Thermal Design and Optimization offers readers a lucid introductionto the latest methodologies for the design of thermal systems andemphasizes engineering economics, system simulation, andoptimization methods. The methods of exergy analysis, entropygeneration minimization, and thermoeconomics are incorporated in anevolutionary manner. This book is one of the few sources available that addresses therecommendations of the Accreditation Board for Engineering andTechnology for new courses in design engineering. Intended forclassroom use as well as self-study, the text provides a review offundamental concepts, extensive reference lists, end-of-chapterproblem sets, helpful appendices, and a comprehensive case studythat is followed throughout the text. Contents include: * Introduction to Thermal System Design * Thermodynamics, Modeling, and Design Analysis * Exergy Analysis * Heat Transfer, Modeling, and Design Analysis * Applications with Heat and Fluid Flow * Applications with Thermodynamics and Heat and Fluid Flow * Economic Analysis * Thermoeconomic Analysis and Evaluation * Thermoeconomic Optimization Thermal Design and Optimization offers engineering students,practicing engineers, and technical managers a comprehensive andrigorous introduction to thermal system design and optimizationfrom a distinctly contemporary perspective. Unlike traditionalbooks that are largely oriented toward design analysis andcomponents, this forward-thinking book aligns itself with anincreasing number of active designers who believe that moreeffective, system-oriented design methods are needed. Thermal Design and Optimization offers a lucid presentation ofthermodynamics, heat transfer, and fluid mechanics as they areapplied to the design of thermal systems. This book broadens thescope of engineering design by placing a strong emphasis onengineering economics, system simulation, and optimizationtechniques. Opening with a concise review of fundamentals, itdevelops design methods within a framework of industrialapplications that gradually increase in complexity. Theseapplications include, among others, power generation by large andsmall systems, and cryogenic systems for the manufacturing,chemical, and food processing industries. This unique book draws on the best contemporary thinking aboutdesign and design methodology, including discussions of concurrentdesign and quality function deployment. Recent developments basedon the second law of thermodynamics are also included, especiallythe use of exergy analysis, entropy generation minimization, andthermoeconomics. To demonstrate the application of important designprinciples introduced, a single case study involving the design ofa cogeneration system is followed throughout the book. In addition, Thermal Design and Optimization is one of the best newsources available for meeting the recommendations of theAccreditation Board for Engineering and Technology for more designemphasis in engineering curricula. Supported by extensive reference lists, end-of-chapter problemsets, and helpful appendices, this is a superb text for both theclassroom and self-study, and for use in industrial design,development, and research. A detailed solutions manual is availablefrom the publisher.