[PDF] Optical Properties Of Semiconductor Nanocrystals eBook

Optical Properties Of Semiconductor Nanocrystals Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Optical Properties Of Semiconductor Nanocrystals book. This book definitely worth reading, it is an incredibly well-written.

Optical Properties of Semiconductor Nanocrystals

Author : S. V. Gaponenko
Publisher : Cambridge University Press
Page : 263 pages
File Size : 26,74 MB
Release : 1998-10-28
Category : Science
ISBN : 0521582415

GET BOOK

Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.

Optical Properties of Semiconductor Quantum Dots

Author : Ulrike Woggon
Publisher : Springer
Page : 252 pages
File Size : 48,48 MB
Release : 2014-03-12
Category : Technology & Engineering
ISBN : 9783662148112

GET BOOK

This book presents an overview of the current understanding of the physics of zero-dimensional semiconductors. It concentrates mainly on quantum dots of wide-gap semiconductors, but touches also on zero-dimensional systems based on silicon and III-V materials. After providing the reader with a theoretical background, the author illustrates the specific properties of three-dimensionally confined semiconductors, such as the size dependence of energy states, optical transitions, and dephasing mechanisms with the results from numerous experiments in linear and nonlinear spectroscopy. Technological concepts of the growth concepts and the potential of this new class of semiconductor materials for electro-optic and nonlinear optical devices are also discussed.

Semiconductor Nanocrystals

Author : Alexander L. Efros
Publisher : Springer Science & Business Media
Page : 277 pages
File Size : 22,63 MB
Release : 2013-06-29
Category : Technology & Engineering
ISBN : 1475736770

GET BOOK

A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.

Semiconductor and Metal Nanocrystals

Author : Victor I. Klimov
Publisher : CRC Press
Page : 505 pages
File Size : 26,78 MB
Release : 2003-11-07
Category : Science
ISBN : 0203913264

GET BOOK

The vast technological potential of nanocrystalline materials, as well as current intense interest in the physics and chemistry of nanoscale phenomena, has led to explosive growth in research on semiconductor nanocrystals, also known as nanocrystal quantum dots, and metal nanoparticles. Semiconductor and Metal Nanocrystals addresses current topics impacting the field including synthesis and assembly of nanocrystals, theory and spectroscopy of interband and intraband optical transitions, single-nanocrystal optical and tunneling spectroscopies, electrical transport in nanocrystal assemblies, and physical and engineering aspects of nanocrystal-based devices. Written by experts who have contributed pioneering research, this reference comprises key advances in the field of semiconductor nanocrystal quantum dots and metal nanoparticles over the past several years. Focusing specifically on nanocrystals generated through chemical techniques, Semiconductor and Metal Nanocrystals Merges investigative frontiers in physics, chemistry, and engineering Documents advances in nanocrystal synthesis and assembly Explores the theory of electronic excitations in nanoscale particles Presents comprehensive information on optical spectroscopy of interband and intraband optical transitions Reviews data on single-nanocrystal optical and tunneling spectroscopies Weighs controversies related to carrier relaxation dynamics in ultrasmall nanoparticles Discusses charge carrier transport in nanocrystal assemblies Provides examples of lasing and photovoltaic nanocrystal-based devices Semiconductor and Metal Nanocrystals is a must read for scientists, engineers, and upper-level undergraduate and graduate students interested in the physics and chemistry of nanoscale semiconductor and metal particles, as well as general nanoscale science.

Semiconductor Nanocrystal Quantum Dots

Author : Andrey Rogach
Publisher : Springer Science & Business Media
Page : 374 pages
File Size : 42,58 MB
Release : 2008-09-02
Category : Technology & Engineering
ISBN : 3211752374

GET BOOK

This is the first book to specifically focus on semiconductor nanocrystals, and address their synthesis and assembly, optical properties and spectroscopy, and potential areas of nanocrystal-based devices. The enormous potential of nanoscience to impact on industrial output is now clear. Over the next two decades, much of the science will transfer into new products and processes. One emerging area where this challenge will be very successfully met is the field of semiconductor nanocrystals. Also known as colloidal quantum dots, their unique properties have attracted much attention in the last twenty years.

Nanocrystal Quantum Dots

Author : Victor I. Klimov
Publisher : CRC Press
Page : 584 pages
File Size : 40,10 MB
Release : 2017-12-19
Category : Technology & Engineering
ISBN : 1351834525

GET BOOK

A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Author : Gerasimos Konstantatos
Publisher : Cambridge University Press
Page : 329 pages
File Size : 31,41 MB
Release : 2013-11-07
Category : Science
ISBN : 0521198267

GET BOOK

Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Optical Properties and Spectroscopy of Nanomaterials

Author : Jin Z. Zhang
Publisher : World Scientific Publishing Company
Page : 0 pages
File Size : 42,18 MB
Release : 2009
Category : Nanostructured materials
ISBN : 9789812836656

GET BOOK

1. Introduction -- 2. Spectroscopic techniques for studying optical properties of nanomaterials. 2.1. UV-visible electronic absorption spectroscopy. 2.2. Photoluminescence and electroluminescence spectroscopy. 2.3. Infrared (IR) and Raman vibrational spectroscopy. 2.4. Time-resolved optical spectroscopy. 2.5. Nonlinear optical spectroscopy : harmonic generation and up-conversion. 2.6. Single nanoparticle and single molecule spectroscopy. 2.7. Dynamic light scattering (DLS). 2.8. Summary -- 3. Other experimental techniques : electron microscopy and X-ray. 3.1. Microscopy : AFM, STM, SEM and TEM. 3.2. X-ray : XRD, XPS, and XAFS, SAXS. 3.3. Electrochemistry and photoelectrochemistry. 3.4. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR). 3.5. Summary -- 4. Synthesis and fabrication of nanomaterials. 4.1. Solution chemical methods. 4.2. Gas or vapor-based methods of synthesis : CVD, MOCVD and MBE. 4.3. Nanolithography techniques. 4.4. Bioconjugation. 4.5. Toxicity and green chemistry approaches for synthesis. 4.6. Summary -- Optical properties of semiconductor nanomaterials. 5.1. Some basic concepts about semiconductors. 5.2. Energy levels and density of states in reduced dimension systems. 5.3. Electronic structure and electronic properties. 5.4. Optical properties of semiconductor nanomaterials. 5.5. Doped semiconductors : absorption and luminescence. 5.6. Nonlinear optical properties. 5.7. Optical properties of single particles. 5.8. Summary -- 6. Optical properties of metal oxide nanomaterials. 6.1. Optical absorption. 6.2. Optical emission. 6.3. Other optical properties : doped and sensitized metal oxides. 6.4. Nonlinear optical properties : luminescence up-conversion (LUC). 6.5. Summary -- 7. Optical properties of metal nanomaterials. 7.1. Strong absorption and lack of photoemission. 7.2. Surface plasmon resonance (SPR). 7.3. Correlation between structure and SPR : a theoretical perspective. 7.4. Surface enhanced Raman scattering (SERS). 7.5. Summary -- 8. Optical properties of composite nanostructures. 8.1. Inorganic semiconductor-insulator and semiconductor-semiconductor. 8.2. Inorganic metal-insulator. 8.3. Inorganic semiconductor-metal. 8.4. Inorganic-organic (polymer). 8.5. Inorganic-biological materials. 8.6. Summary -- 9. Charge carrier dynamics in nanomaterials. 9.1. Experimental techniques for dynamics studies in nanomaterials. 9.2. Electron and photon relaxation dynamics in metal nanomaterials. 9.3. Charge carrier dynamics in semiconductor nanomaterials. 9.4. Charge carrier dynamics in metal oxide and insulator nanomaterials. 9.5. Photoinduced charge transfer dynamics. 9.6. Summary -- 10. Applications of optical properties of nanomaterials. 10.1. Chemical and biomedical detection, imaging and therapy. 10.2. Energy conversion : PV and PEC. 10.3. Environmental protection : photocatalytic and photochemical reactions. 10.4. Lasers, LEDs, and solid state lighting. 10.5. Optical filters : photonic bandgap materials or photonic crystals. 10.6. Summary

Semiconductor Nanocrystals and Metal Nanoparticles

Author : Tupei Chen
Publisher : Advances in Materials Science
Page : 512 pages
File Size : 27,17 MB
Release : 2019-12-12
Category : Technology & Engineering
ISBN : 9780367866624

GET BOOK

Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.