[PDF] Nonlinear And Robust Control Of Pde Systems eBook

Nonlinear And Robust Control Of Pde Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Nonlinear And Robust Control Of Pde Systems book. This book definitely worth reading, it is an incredibly well-written.

Nonlinear and Robust Control of PDE Systems

Author : Panagiotis D. Christofides
Publisher : Springer Science & Business Media
Page : 262 pages
File Size : 12,55 MB
Release : 2012-12-06
Category : Science
ISBN : 1461201853

GET BOOK

The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.

Stabilization, Optimal and Robust Control

Author : Aziz Belmiloudi
Publisher : Springer Science & Business Media
Page : 509 pages
File Size : 16,17 MB
Release : 2008-08-17
Category : Technology & Engineering
ISBN : 1848003447

GET BOOK

Stabilization, Optimal and Robust Control develops robust control of infinite-dimensional dynamical systems derived from time-dependent coupled PDEs associated with boundary-value problems. Rigorous analysis takes into account nonlinear system dynamics, evolutionary and coupled PDE behaviour and the selection of function spaces in terms of solvability and model quality. Mathematical foundations are provided so that the book remains accessible to the non-control-specialist. Following chapters giving a general view of convex analysis and optimization and robust and optimal control, problems arising in fluid mechanical, biological and materials scientific systems are laid out in detail. The combination of mathematical fundamentals with application of current interest will make this book of much interest to researchers and graduate students looking at complex problems in mathematics, physics and biology as well as to control theorists.

Delay Compensation for Nonlinear, Adaptive, and PDE Systems

Author : Miroslav Krstic
Publisher : Springer Science & Business Media
Page : 458 pages
File Size : 17,54 MB
Release : 2010-01-23
Category : Mathematics
ISBN : 0817648771

GET BOOK

Shedding light on new opportunities in predictor feedback, this book significantly broadens the set of techniques available to a mathematician or engineer working on delay systems. It is a collection of tools and techniques that make predictor feedback ideas applicable to nonlinear systems, systems modeled by PDEs, systems with highly uncertain or completely unknown input/output delays, and systems whose actuator or sensor dynamics are modeled by more general hyperbolic or parabolic PDEs, rather than by pure delay. Replete with examples, Delay Compensation for Nonlinear, Adaptive, and PDE Systems is an excellent reference guide for graduate students, researchers, and professionals in mathematics, systems control, as well as chemical, mechanical, electrical, computer, aerospace, and civil/structural engineering. Parts of the book may be used in graduate courses on general distributed parameter systems, linear delay systems, PDEs, nonlinear control, state estimator and observers, adaptive control, robust control, or linear time-varying systems.

Nonlinear Control Systems and Power System Dynamics

Author : Qiang Lu
Publisher : Springer Science & Business Media
Page : 398 pages
File Size : 17,4 MB
Release : 2013-04-17
Category : Mathematics
ISBN : 1475733127

GET BOOK

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.

Boundary Control of PDEs

Author : Miroslav Krstic
Publisher : SIAM
Page : 197 pages
File Size : 39,6 MB
Release : 2008-01-01
Category : Mathematics
ISBN : 0898718600

GET BOOK

The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.

Robust Engineering Designs of Partial Differential Systems and Their Applications

Author : Bor-Sen Chen
Publisher : CRC Press
Page : 459 pages
File Size : 32,60 MB
Release : 2021-12-22
Category : Mathematics
ISBN : 1000514064

GET BOOK

Most systems in science, engineering, and biology are of partial differential systems (PDSs) modeled by partial differential equations. Many books about partial differential equations have been written by mathematicians and mainly address some fundamental mathematic backgrounds and discuss some mathematic properties of partial differential equations. Only a few books on PDSs have been written by engineers; however, these books have focused mainly on the theoretical stabilization analysis of PDSs, especially mechanical systems. This book investigates both robust stabilization control design and robust filter design and reference tracking control design in mechanical, signal processing, and control systems to fill a gap in the study of PDSs. Robust Engineering Designs of Partial Differential Systems and Their Applications offers some fundamental background in the first two chapters. The rest of the chapters focus on a specific design topic with a corresponding deep investigation into robust H∞ filtering, stabilization, or tracking design for more complex and practical PDSs under stochastic fluctuation and external disturbance. This book is aimed at engineers and scientists and addresses the gap between the theoretical stabilization results of PDSs in academic and practical engineering designs more focused on the robust H∞ filtering, stabilization, and tracking control problems of linear and nonlinear PDSs under intrinsic random fluctuation and external disturbance in industrial applications. Part I provides backgrounds on PDSs, such as Galerkin’s, and finite difference methods to approximate PDSs and a fuzzy method to approximate nonlinear PDSs. Part II examines robust H∞ filter designs for the robust state estimation of linear and nonlinear stochastic PDSs. And Part III treats robust H∞ stabilization and tracking control designs of linear and nonlinear PDSs. Every chapter focuses on an engineering design topic with both theoretical design analysis and practical design examples.

Robust Engineering Designs of Partial Differential Systems and Their Applications

Author : Bor-Sen Chen
Publisher : CRC Press
Page : 255 pages
File Size : 46,76 MB
Release : 2021-12-23
Category : Mathematics
ISBN : 1000514099

GET BOOK

Most systems in science, engineering, and biology are of partial differential systems (PDSs) modeled by partial differential equations. Many books about partial differential equations have been written by mathematicians and mainly address some fundamental mathematic backgrounds and discuss some mathematic properties of partial differential equations. Only a few books on PDSs have been written by engineers; however, these books have focused mainly on the theoretical stabilization analysis of PDSs, especially mechanical systems. This book investigates both robust stabilization control design and robust filter design and reference tracking control design in mechanical, signal processing, and control systems to fill a gap in the study of PDSs. Robust Engineering Designs of Partial Differential Systems and Their Applications offers some fundamental background in the first two chapters. The rest of the chapters focus on a specific design topic with a corresponding deep investigation into robust H∞ filtering, stabilization, or tracking design for more complex and practical PDSs under stochastic fluctuation and external disturbance. This book is aimed at engineers and scientists and addresses the gap between the theoretical stabilization results of PDSs in academic and practical engineering designs more focused on the robust H∞ filtering, stabilization, and tracking control problems of linear and nonlinear PDSs under intrinsic random fluctuation and external disturbance in industrial applications. Part I provides backgrounds on PDSs, such as Galerkin’s, and finite difference methods to approximate PDSs and a fuzzy method to approximate nonlinear PDSs. Part II examines robust H∞ filter designs for the robust state estimation of linear and nonlinear stochastic PDSs. And Part III treats robust H∞ stabilization and tracking control designs of linear and nonlinear PDSs. Every chapter focuses on an engineering design topic with both theoretical design analysis and practical design examples.

Nonlinear Control of Delay and PDE Systems

Author : Nikolaos Bekiaris-Liberis
Publisher :
Page : 381 pages
File Size : 44,58 MB
Release : 2013
Category :
ISBN : 9781303193262

GET BOOK

In this dissertation we develop systematic procedures for the control and analysis of general nonlinear systems with delays and of nonlinear PDE systems. We design predictor feedback laws (i.e., feedback laws that use the future, rather than the current state of the system) for the compensation of delays (i.e., after the control signal reaches the system for the first time, the system behaves as there were no delay at all) that can be time-varying or state-dependent, on the input and on the state of nonlinear systems. We also provide designs of predictor feedback laws for linear systems with constant distributed delays and known or unknown plant parameters, and for linear systems with simultaneous known or unknown constant delays on the input and the state. Moreover, we introduce infinite-dimensional backstepping transformations for each particular problem, which enables us to construct Lyapunov-Krasovskii functionals. With the available Lyapunov-Krasovskii functionals we study stability, as well as, robustness of our control laws to plant uncertainties. We deal with coupled PDE-ODE systems. We consider nonlinear systems with wave actuator dynamics, for which we design a predictor inspired feedback law. We study stability of the closed-loop system either by constructing Lyapunov functionals, or using arguments of explicit solutions. We also consider linear systems with distributed actuator and sensor dynamics governed by diffusion or wave PDEs, for which we design stabilizing feedback laws. We study stability of the closed-loop systems using Lyapunov functionals that we construct with the introduction of infinite-dimensional transformations of forwarding type. Finally, we develop a control design methodology for coupled nonlinear first-order hyperbolic PDEs through an application to automotive catalysts.

Handbook of Research on Modeling, Analysis, and Control of Complex Systems

Author : Azar, Ahmad Taher
Publisher : IGI Global
Page : 685 pages
File Size : 19,63 MB
Release : 2020-12-05
Category : Mathematics
ISBN : 1799857905

GET BOOK

The current literature on dynamic systems is quite comprehensive, and system theory’s mathematical jargon can remain quite complicated. Thus, there is a need for a compendium of accessible research that involves the broad range of fields that dynamic systems can cover, including engineering, life sciences, and the environment, and which can connect researchers in these fields. The Handbook of Research on Modeling, Analysis, and Control of Complex Systems is a comprehensive reference book that describes the recent developments in a wide range of areas including the modeling, analysis, and control of dynamic systems, as well as explores related applications. The book acts as a forum for researchers seeking to understand the latest theory findings and software problem experiments. Covering topics that include chaotic maps, predictive modeling, random bit generation, and software bug prediction, this book is ideal for professionals, academicians, researchers, and students in the fields of electrical engineering, computer science, control engineering, robotics, power systems, and biomedical engineering.

Advanced Autonomous Vehicle Design for Severe Environments

Author : V.V. Vantsevich
Publisher : IOS Press
Page : 408 pages
File Size : 29,84 MB
Release : 2015-10-20
Category : Technology & Engineering
ISBN : 1614995761

GET BOOK

Classical vehicle dynamics, which is the basis for manned ground vehicle design, has exhausted its potential for providing novel design concepts to a large degree. At the same time, unmanned ground vehicle (UGV) dynamics is still in its infancy and is currently being developed using general analytical dynamics principles with very little input from actual vehicle dynamics theory. This technical book presents outcomes from the NATO Advanced Study Institute (ASI) ‘Advanced Autonomous Vehicle Design for Severe Environments’, held in Coventry, UK, in July 2014. The ASI provided a platform for world class professionals to meet and discuss leading-edge research, engineering accomplishments and future trends in manned and unmanned ground vehicle dynamics, terrain mobility and energy efficiency. The outcomes of this collective effort serve as an analytical foundation for autonomous vehicle design. Topics covered include: historical aspects, pivotal accomplishments and the analysis of future trends in on- and off-road manned and unmanned vehicle dynamics; terramechanics, soil dynamic characteristics, uncertainties and stochastic characteristics of vehicle-environment interaction for agile vehicle dynamics modeling; new methods and techniques in on-line control and learning for vehicle autonomy; fundamentals of agility and severe environments; mechatronics and cyber-physics issues of agile vehicle dynamics to design for control, energy harvesting and cyber security; and case studies of agile and inverse vehicle dynamics and vehicle systems design, including optimisation of suspension and driveline systems. The book targets graduate students, who desire to advance further in leading-edge vehicle dynamics topics in manned and unmanned ground vehicles, PhD students continuing their research work and building advanced curricula in academia and industry, and researchers in government agencies and private companies.