[PDF] Millimeter Wave Communications eBook

Millimeter Wave Communications Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Millimeter Wave Communications book. This book definitely worth reading, it is an incredibly well-written.

Millimeter Wave Wireless Communications

Author : Theodore S. Rappaport
Publisher : Pearson Education
Page : 705 pages
File Size : 45,35 MB
Release : 2015
Category : Computers
ISBN : 0132172283

GET BOOK

The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design “This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.” —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig)

Millimeter-Wave (mmWave) Communications

Author : Manuel García Sanchez
Publisher : MDPI
Page : 188 pages
File Size : 26,99 MB
Release : 2020-03-25
Category : Technology & Engineering
ISBN : 3039284304

GET BOOK

The millimeter-wave frequency band (30–300 GHz) is considered a potential candidate to host very high data rate communications. First used for high capacity radio links and then for broadband indoor wireless networks, the interest in this frequency band has increased as it is proposed to accommodate future 5G mobile communication systems. The large bandwidth available will enable a number of new uses for 5G. In addition, due to the large propagation attenuation, this frequency band may provide some additional advantages regarding frequency reuse and communication security. However, a number of issues have to be addressed to make mm-wave communications viable. This book collects a number of contributions that present solutions to these challenges.

Millimeter Wave Communication Systems

Author : Kao-Cheng Huang
Publisher : John Wiley & Sons
Page : 304 pages
File Size : 15,35 MB
Release : 2011-04-20
Category : Technology & Engineering
ISBN : 1118102754

GET BOOK

The aim of this book is to present the modern design and analysis principles of millimeter-wave communication system for wireless devices and to give postgraduates and system professionals the design insights and challenges when integrating millimeter wave personal communication system. Millimeter wave communication system are going to play key roles in modern gigabit wireless communication area as millimeter-wave industrial standards from IEEE, European Computer Manufacturing Association (ECMA) and Wireless High Definition (Wireless HD) Group, are on their way to the market. The book will review up-to-date research results and utilize numerous design and analysis for the whole system covering from Millimeter wave frontend to digital signal processing in order to address major topics in a high speed wireless system. This book emphasizes the importance and the requirements of high-gain antennas, low power transceiver, adaptive equalizer/modulation, channeling coding and adaptive multi-user detection for gigabit wireless communications. In addition, the book will include the updated research literature and patents in the topics of transceivers, antennas, MIMO, channel capacity, coding, equalizer, Modem and multi-user detection. Finally the application of these antennas will be discussed in light of different forthcoming wireless standards at V-band and E-band.

Multi-gigabit Microwave and Millimeter-wave Wireless Communications

Author : Jonathan Wells
Publisher : Artech House
Page : 245 pages
File Size : 14,93 MB
Release : 2010
Category : Technology & Engineering
ISBN : 1608070832

GET BOOK

For decades, microwave radios in the 6 to 50 GHz bands have been providing wireless communications. Exploring this area, this resource offers the details on multigigabit wireless communications.

Millimeter Wave Vehicular Communications

Author : Vutha Va
Publisher :
Page : 126 pages
File Size : 39,74 MB
Release : 2016-06-14
Category : Computers
ISBN : 9781680831481

GET BOOK

This monograph provides a survey on mmWave vehicular networks including channel propagation measurement, PHY design, and MAC design.

Millimeter-Wave (mmWave) Communications

Author : Manuel García Sanchez
Publisher :
Page : 188 pages
File Size : 10,24 MB
Release : 2020
Category : Engineering (General). Civil engineering (General)
ISBN : 9783039284313

GET BOOK

The millimeter-wave frequency band (30-300 GHz) is considered a potential candidate to host very high data rate communications. First used for high capacity radio links and then for broadband indoor wireless networks, the interest in this frequency band has increased as it is proposed to accommodate future 5G mobile communication systems. The large bandwidth available will enable a number of new uses for 5G. In addition, due to the large propagation attenuation, this frequency band may provide some additional advantages regarding frequency reuse and communication security. However, a number of issues have to be addressed to make mm-wave communications viable. This book collects a number of contributions that present solutions to these challenges.

Millimeter-Wave Circuits for 5G and Radar

Author : Gernot Hueber
Publisher : Cambridge University Press
Page : 455 pages
File Size : 42,70 MB
Release : 2019-06-20
Category : Technology & Engineering
ISBN : 1108757510

GET BOOK

Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.

Analysis and Optimization for Robust Millimeter-Wave Communications

Author : Cristian Tatino
Publisher : Linköping University Electronic Press
Page : 53 pages
File Size : 39,15 MB
Release : 2021-01-13
Category : Electronic books
ISBN : 917929734X

GET BOOK

Spectrum scarcity is a longstanding problem in mobile telecommunications networks. Specifically, accommodating the ever-growing data rate and communications demand in the extensively used spectrum between 800 MHz and 6 GHz is becoming more challenging. For this reason, in the last years, communications in the millimeterwave (mm-wave) frequency range (30-300 GHz) have attracted the interest of many researchers, who consider mm-wave communications a key enabler for upcoming generations of mobile communications, i.e., 5G and 6G. However, the signal propagation in the mm-wave frequency range is subject to more challenging conditions. High path loss and penetration loss may lead to short-range communications and frequent transmission interruptions when the signal path between the transmitter and the receiver is blocked. In this dissertation, we analyze and optimize techniques that enhance the robustness and reliability of mm-wave communications. In the first part, we focus on approaches that allow user equipment (UE) to establish and maintain connections with multiple access points (APs) or relays, i.e., multi-connectivity (MC) and relaying techniques, to increase link failure robustness. In such scenarios, an inefficient link scheduling, i.e., over or under-provisioning of connections, can lead to either high interference and energy consumption or unsatisfied user’s quality of service (QoS) requirements. In the first paper, we propose a novel link scheduling algorithm for network throughput maximization with constrained resources and quantify the potential gain of MC. As a complementary approach, in the second paper, we solve the problem of minimizing allocated resources while satisfying users’ QoS requirements for mm-wave MC scenarios. To deal with the channel uncertainty and abrupt blockages, we propose a learning-based solution, of which the results highlight the tradeoff between reliability and allocated resource. In the third paper, we perform throughput and delay analysis of a multi-user mm-wave wireless network assisted by a relay. We show the benefits of cooperative networking and the effects of directional communications on relay-aided mm-wave communications. These, as highlighted by the results, are characterized by a tradeoff between throughput and delay and are highly affected by the beam alignment duration and transmission strategy (directional or broadcast). The second part of this dissertation focuses on problems related to mm-wave communications in industrial scenarios, where robots and new industrial applications require high data rates, and stringent reliability and latency requirements. In the fourth paper, we consider a multi-AP mm-wave wireless network covering an industrial plant where multiple moving robots need to be connected. We show how the joint optimization of robots’ paths and the robot-AP associations can increase mm-wave robustness by decreasing the number of handovers and avoiding coverage holes. Finally, the fifth paper considers scenarios where robot-AP communications are assisted by an intelligent reflective surface (IRS). We show that the joint optimization of beamforming and trajectory of the robot can minimize the motion energy consumption while satisfying time and communication QoS constraints. Moreover, the proposed solution exploits a radio map to prevent collisions with obstacles and to increase mm-wave communication robustness by avoiding poorly covered areas.

Millimeter Wave Technology in Wireless PAN, LAN, and MAN

Author : Shao-Qiu Xiao
Publisher : CRC Press
Page : 448 pages
File Size : 38,78 MB
Release : 2008-05-28
Category : Technology & Engineering
ISBN : 0849382289

GET BOOK

Driven by the demand for high-data-rate, millimeter wave technologies with broad bandwidth are being explored in high-speed wireless communications. These technologies include gigabit wireless personal area networks (WPAN), high-speed wireless local area networks (WLAN), and high-speed wireless metropolitan area networks (WMAN). As a result of this

Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems

Author : Zhi Ning Chen
Publisher : John Wiley & Sons
Page : 322 pages
File Size : 40,36 MB
Release : 2021-04-29
Category : Technology & Engineering
ISBN : 1119611156

GET BOOK

Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens's surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.