[PDF] Metal Fluorocarbon Based Energetic Materials eBook

Metal Fluorocarbon Based Energetic Materials Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Metal Fluorocarbon Based Energetic Materials book. This book definitely worth reading, it is an incredibly well-written.

Metal-Fluorocarbon Based Energetic Materials

Author : Ernst-Christian Koch
Publisher : John Wiley & Sons
Page : 362 pages
File Size : 50,22 MB
Release : 2012-03-26
Category : Science
ISBN : 352732920X

GET BOOK

Metal-Fluorocarbon Based Energetic Materials This exciting new book details all aspects of a major class of pyrolants and elucidates the progress that has been made in the field, covering both the chemistry and applications of these compounds. Written by a pre-eminent authority on the subject from the NATO Munitions Safety Information Analysis Center (MSIAC), it begins with a historical overview of the development of these materials, followed by a thorough discussion of their ignition, combustion and radiative properties. The next section explores the multiple facets of their military and civilian applications, as well as industrial synthetic techniques. The critical importance of the associated hazards, namely sensitivity, stability and aging, are discussed in detail, and the book is rounded off by an examination of the future of this vital and expanding field. The result is a complete guide to the chemistry, manufacture, applications and required safety precautions of pyrolants for both the military and chemical industries. From the preface: “... This book fills a void in the collection of pyrotechnic literature... it will make an excellent reference book that all researchers of pyrolants and energetics must have...” Dr. Bernard E. Douda, Dr. Sara Pliskin, NAVSEA Crane, IN, USA

Metal-Fluorocarbon Based Energetic Materials

Author : Ernst-Christian Koch
Publisher : John Wiley & Sons
Page : 362 pages
File Size : 41,16 MB
Release : 2012-04-06
Category : Science
ISBN : 3527644199

GET BOOK

Metal-Fluorocarbon Based Energetic Materials This exciting new book details all aspects of a major class of pyrolants and elucidates the progress that has been made in the field, covering both the chemistry and applications of these compounds. Written by a pre-eminent authority on the subject from the NATO Munitions Safety Information Analysis Center (MSIAC), it begins with a historical overview of the development of these materials, followed by a thorough discussion of their ignition, combustion and radiative properties. The next section explores the multiple facets of their military and civilian applications, as well as industrial synthetic techniques. The critical importance of the associated hazards, namely sensitivity, stability and aging, are discussed in detail, and the book is rounded off by an examination of the future of this vital and expanding field. The result is a complete guide to the chemistry, manufacture, applications and required safety precautions of pyrolants for both the military and chemical industries. From the preface: “... This book fills a void in the collection of pyrotechnic literature... it will make an excellent reference book that all researchers of pyrolants and energetics must have...” Dr. Bernard E. Douda, Dr. Sara Pliskin, NAVSEA Crane, IN, USA

Energetic Materials and Munitions

Author : Adam Stewart Cumming
Publisher : John Wiley & Sons
Page : 301 pages
File Size : 39,24 MB
Release : 2019-02-20
Category : Science
ISBN : 3527816666

GET BOOK

Provides a hands-on approach to demilitarization and environmental aspects of energetic materials and munitions This book gives an overview of the environmental impact of the production, use, and cleanup of energetic materials and munitions. It provides scientists, engineers, environmental specialists, and users with the understanding of environmental issues for munitions and of the ways to improve design and manage potential risks. It covers the various aspects of how chemical properties influence fate, transport, and toxicity of new formulations and prescribes tools for reducing or alleviating environmental risks. In addition, it discusses pyrotechnics and the problem of dealing with munitions underwater. Chapters in Energetic Materials and Munitions: Life Cycle Management, Environmental Impact and Demilitarization look at demilitarization in general, as well as in the future. Topics covered include logistics, costs, and management; life cycle analysis and management; and greener munitions. Another introduces readers to the "One Health" approach in the design of sustainable munition compounds. Following that, readers are taught about land assessment for munitions-related contamination in military live-fire training. The book also examines the development and integration of environmental, safety, and occupational health information. -Brings together in one source expertise and in-depth information on the current and future state of how we handle the production, use, and demilitarization of explosives and weaponry -A handy reference for experienced practitioners, as well as for training young professionals in the field -Every chapter contains real-life examples and proposes future directions for the field Energetic Materials and Munitions: Life Cycle Management, Environmental Impact and Demilitarization is an important book for explosives specialists, pyrotechnicians, materials scientists, military authorities, safety officers, health officers, and chemical engineers.

Green Energetic Materials

Author : Tore Brinck
Publisher : John Wiley & Sons
Page : 296 pages
File Size : 43,44 MB
Release : 2014-01-15
Category : Science
ISBN : 1118676467

GET BOOK

This comprehensive book presents a detailed account of research and recent developments in the field of green energetic materials, including pyrotechnics, explosives and propellants. This area is attracting increasing interest in the community as it undergoes a transition from using traditional processes, to more environmentally-friendly procedures. The book covers the entire line of research from the initial theoretical modelling and design of new materials, to the development of sustainable manufacturing processes. It also addresses materials that have already reached the production line, as well as considering future developments in this evolving field.

Metal Nanopowders

Author : Alexander A. Gromov
Publisher : John Wiley & Sons
Page : 442 pages
File Size : 19,58 MB
Release : 2014-05-19
Category : Science
ISBN : 3527333614

GET BOOK

Written with both postgraduate students and researchers in academia and industry in mind, this reference covers the chemistry behind metal nanopowders, including production, characterization, oxidation and combustion. The contributions from renowned international scientists working in the field detail applications in technologies, scale-up processes and safety aspects surrounding their handling and storage.

Chemistry of High-Energy Materials

Author : Thomas M. Klapötke
Publisher : Walter de Gruyter GmbH & Co KG
Page : 658 pages
File Size : 10,25 MB
Release : 2022-08-01
Category : Technology & Engineering
ISBN : 3110736101

GET BOOK

Chemistry of High-Energy Materials continues in this new and revised 6th edition to provide fundamental scientifi c insights into primary and secondary explosives, propellants, rocket fuels and pyrotechnics. It expands with new research developments, including new melt casts, reactive structure materials, a computational study on the detonation velocity of mixtures of solid explosives with non-explosive liquids, calculation of craters after explosions. This work is of interest to advanced students in chemistry, materials science and engineering, as well as to all those working in military and defense technology.

High Explosives, Propellants, Pyrotechnics

Author : Ernst-Christian Koch
Publisher : Walter de Gruyter GmbH & Co KG
Page : 1046 pages
File Size : 39,88 MB
Release : 2021-01-18
Category : Technology & Engineering
ISBN : 3110660598

GET BOOK

This dictionary contains 739 entries with about 1400 references to the primary literature. Details on the composition, performance, sensitivity and other pertinent properties of Energetic Materials such as High Explosives, Propellants, Pyrotechnics, as well as important ingredients such as Oxidizers, Fuels, Binders, and Modifiers are given and presented partly in over 180 tables with more than 240 structural formulas . In detail the dictionary gives elaborate descriptions of 460 Chemical Substances 170 Pyrotechnic Compositions 360 High Explosive and Propellant Formulations In addition, the basic physical and thermochemical properties of 435 pure substances (elements & compounds) typically occuring as ingredients or reaction products are given too. 150 Figures, schemes and diagrams explain Applications, Test methods, Scientific facilities, and finally Individuals closely tied with the development and investigation of Energetic Materials. The book is intended for readers with a technical or scientific background, active in governmental agencies, research institutes, trade and industry, concerned with the procurement, development, manufacture, investigation and use of Energetic Materials, such as High Explosives, Propellants, Pyrotechnics, Fireworks and Ammunition. The book serves both as a daily reference for the experienced as well as an introduction for the newcomer to the field.

Nanoengineering and Synthesis of Metal-Based Materials for Enhanced Energetic Performance

Author : Prawal Agarwal
Publisher :
Page : 0 pages
File Size : 17,35 MB
Release : 2023
Category :
ISBN :

GET BOOK

Metal-based energetic materials are a pathway for clean and sustainable energy applications because of their high energy densities and ability to oxidize readily and release large amounts of heat. They are sustainable sources of green combustion and can easily be stored and transported because they are chemically stable solids compared to hydrocarbon fuels. These merits lead to their applications in volume-limited propulsion, solid fuels, explosives, space exploration, self-destructing energetic chips, electrochemical energy storage, and hydrogen generation/storage. To be used effectively in these applications, nanometer-sized particles are beneficial because of the fast ignition, more complete combustion, and enhanced heat transfer and reaction rates due to the larger specific surface area available for the reaction. However, some roadblocks exist in harnessing the benefits of metal nanoparticles (NPs). The surfaces of the metal NPs are highly reactive. Hence, there is a formation of a native oxide layer on their surface. This native oxide occupies a significant fraction of mass in the sample that does not contribute to the oxidative heat release of the sample and also acts as a diffusion barrier on the metal NP surface that delays the contact of oxidizer with metal in the core and thus restricts the combustion process. Various methods are available in the literature to minimize the inhibiting effects of the native oxide layer on oxidative heat release. These methods are based on surface functionalization using solution-based approaches, reactive milling, coating reactive metals on other metals, and high-temperature sintering to synthesize metal borides. These methods helped us to determine how to approach solving the problem of the native oxide layer and investigating possible routes to improve the oxidative energy release from metal-based nanomaterials. We can either reduce native oxide or convert them into a reactive component such that they contribute to the oxidative heat release. In our work, we used nonthermal plasma processing and intermetallic chemistry based on self-propagating high-temperature synthesis (SHS) reactions. Nonthermal plasma is a low-temperature operation that triggers selective and rapid reactions on the surface. Due to low-temperature operation, this process uses energy efficiently. We used hydrogen plasma to generate reactive hydrogen species that can reduce native oxides of metal at room temperature. We also used plasma-enhanced chemical vapor deposition (PECVD) through argon plasma to deposit reactive nanofilms on the metal NPs surfaces to enhance the energy performance during oxidation and to passivate their surfaces to inhibit oxide growth in extreme temperature and humid conditions during storage. Using SHS, we synthesize solid solutions of metals with long storage life because of their thermal stability and with enhanced oxidative heat release due to the reduction of less reactive metal oxide with a more reactive metal. The process temperature is selected so that there is no sintering and agglomeration of NPs during the process. Both the above processes are dry-phase process and reduces the contamination of metals. Using nonthermal plasma processing, we enhanced the oxidative heat release from boron (B) NPs by developing an in-situ process in which hydrogen plasma reduces B oxide and PECVD coats the surface with a thin fluorocarbon film to stop reoxidation when NPs are exposed to the environment. PECVD is used to deposit reactive nanofilms of perfluorodecalin and oleic acid on the surface of aluminum (Al) NPs, which lead to superior energy performance of Al NPs. The plasma-based oleic acid nanofilms performed better than graphene oxide. Hydrogen plasma doped the Al NPs with hydrides such that during oxidation, channels are formed on the surface due to gas transport, leading to better oxidation of metal in the core. Boron is a desirable candidate for energetic applications with the highest gravimetric and volumetric energy density of 58 kJ/g and 140 kJ/mL. The energy from B can be exploited by the addition of reactive metals with reasonable gravimetric energy density, such as Al and magnesium (Mg), in the form of a mechanical mixture or solid solutions, which can undergo an exothermic redox reaction to reduce native oxide and enrich metallic B. We used SHS and mechanical mixing to form Mg/B solid solutions and energy-optimized Al/B systems to synthesize energetic materials. We also combined plasma chemistry and intermetallic chemistry to investigate the integrated effects of these processes on B energetics. Hence, we reduced native oxides and/or converted them into energetic components via nanoengineering by fabricating core-shell architectures and synthesizing energetic nanomaterials with enhanced energy performance and extended storage stability.

BALLISTICS 2014

Author : Richard G. Ames
Publisher : DEStech Publications, Inc
Page : 951 pages
File Size : 23,11 MB
Release : 2014-10-01
Category : Technology & Engineering
ISBN : 1605951498

GET BOOK

Original research from around the world on weapons-grade projectiles, warheads, missiles, guns and their effects on target materialsNew information on shaped charges, fire, control strategies, simulation, blast resistance, non-lethal systems and more190 original presentations in two printed volumes, plus searchable CD The first part of this 2-volume set, part of an ongoing series, presents previously unpublished research on the design and modeling of ballistic devices ranging from shells to missiles, including explosives, propellants and internal components. The second part investigates the effects of ballistic penetrants on a variety of targets, including human models, as well as hard targets and diverse armors made from engineered fibers, ceramics, metal alloys and concrete. Data is included on the modeling and testing of novel devices, explosives and shielding strategies. Papers in this text were presented at a symposium organized by the National Defense Industrial Association with the International Ballistics Society. The CD-ROM displays figures and illustrations in articles in full color along with a title screen and main menu screen. Each user can link to all papers from the Table of Contents and Author Index and also link to papers and front matter by using the global bookmarks which allow navigation of the entire CD-ROM from every article. Search features on the CD-ROM can be by full text including all key words, article title, author name, and session title. The CD-ROM has Autorun feature for Windows 2000 with Service Pack 4 or higher products along with the program for Adobe Acrobat Reader with Search 11.0. One year of technical support is included with your purchase of this product.

Energetic Nanomaterials

Author : Vladimir E Zarko
Publisher : Elsevier
Page : 394 pages
File Size : 47,52 MB
Release : 2016-01-21
Category : Science
ISBN : 0128027150

GET BOOK

Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application. This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials. The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world. Written by high-level experts in the field of nanoenergetics Covers the hot topic of energetic nanomaterials, including nanometals and their applications in nanoexplosives Fills a gap in energetic nanomaterials book publications