[PDF] Mathematical Methods In Applied Sciences eBook

Mathematical Methods In Applied Sciences Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Mathematical Methods In Applied Sciences book. This book definitely worth reading, it is an incredibly well-written.

Mathematical Methods in Applied Sciences

Author : Luigi Rodino
Publisher : MDPI
Page : 160 pages
File Size : 10,51 MB
Release : 2020-03-13
Category : Mathematics
ISBN : 3039284967

GET BOOK

This book includes the seven papers that contributed to the Special Issue of Mathematics entitled “Mathematical Methods in Applied Sciences”. The papers are authored by eminent specialists and aim at presenting to a broad audience some mathematical models which appear in different aspects of modern life. New results in Computational Mathematics are given as well. Emphasis is on Medicine and Public Health, in relation also with Social Sciences. The models in this collection apply in particular to the study of brain cells during a stroke, training management efficiency for elite athletes, and optimal surgical operation scheduling. Other models concern Industry and Economy, as well as Biology and Chemistry. Numerical Methods are represented in particular by scattered data interpolation, spectral collocation, and the use of eigenvalues and eigenvectors of the Laplacian matrix. This book will appeal to scientists, teachers, and graduate students in Mathematics, in particular Numerical Analysis, and will be of interest for scholars in Applied Sciences, particularly in Medicine and Public Health.

Mathematical Methods for the Natural and Engineering Sciences

Author : Ronald E. Mickens
Publisher : World Scientific
Page : 544 pages
File Size : 26,4 MB
Release : 2004
Category : Technology & Engineering
ISBN : 9789812387509

GET BOOK

This book provides a variety of methods required for the analysis and solution of equations which arise in the modeling of phenomena from the natural and engineering sciences. It can be used productively by both undergraduate and graduate students, as well as others who need to learn and understand these techniques. A detailed discussion is also presented for several topics that are usually not included in standard textbooks at this level: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations, and various perturbation methods. Each chapter contains a large number of worked examples and provides references to the appropriate literature.

Mathematical Methods in Engineering and Applied Sciences

Author : Taylor & Francis Group
Publisher : CRC Press
Page : 308 pages
File Size : 50,97 MB
Release : 2021-09-30
Category :
ISBN : 9781032175911

GET BOOK

This book covers tools and techniques used for developing mathematical methods and modelling related to real-life situations. It brings forward significant aspects of mathematical research by using different mathematical methods such as analytical, computational, and numerical with relevance or applications in engineering and applied sciences.

Mathematical Methods in Science and Engineering

Author : Selcuk S. Bayin
Publisher : John Wiley & Sons
Page : 710 pages
File Size : 17,81 MB
Release : 2006-09-01
Category : Mathematics
ISBN : 0470047410

GET BOOK

An innovative treatment of mathematical methods for a multidisciplinary audience Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers. Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers. There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses. Mathematical Methods in Science and Engineering includes: * Comprehensive chapters on coordinates and tensors and on continuous groups and their representations * An emphasis on physical motivation and the multidisciplinary nature of the methods discussed * A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience * Exercises at the end of every chapter and plentiful examples throughout the book Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years.

Mathematical Models in the Applied Sciences

Author : A. C. Fowler
Publisher : Cambridge University Press
Page : 440 pages
File Size : 45,68 MB
Release : 1997-11-28
Category : Mathematics
ISBN : 9780521467032

GET BOOK

Presents a thorough grounding in the techniques of mathematical modelling, and proceeds to explore a range of classical and continuum models from an array of disciplines.

Mathematical Methods in Science and Engineering

Author : Selcuk S. Bayin
Publisher : John Wiley & Sons
Page : 742 pages
File Size : 12,89 MB
Release : 2018-03-27
Category : Education
ISBN : 1119425395

GET BOOK

A Practical, Interdisciplinary Guide to Advanced Mathematical Methods for Scientists and Engineers Mathematical Methods in Science and Engineering, Second Edition, provides students and scientists with a detailed mathematical reference for advanced analysis and computational methodologies. Making complex tools accessible, this invaluable resource is designed for both the classroom and the practitioners; the modular format allows flexibility of coverage, while the text itself is formatted to provide essential information without detailed study. Highly practical discussion focuses on the “how-to” aspect of each topic presented, yet provides enough theory to reinforce central processes and mechanisms. Recent growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance to expand advanced mathematical methods beyond theoretical physics. This book is written with this multi-disciplinary group in mind, emphasizing practical solutions for diverse applications and the development of a new interdisciplinary science. Revised and expanded for increased utility, this new Second Edition: Includes over 60 new sections and subsections more useful to a multidisciplinary audience Contains new examples, new figures, new problems, and more fluid arguments Presents a detailed discussion on the most frequently encountered special functions in science and engineering Provides a systematic treatment of special functions in terms of the Sturm-Liouville theory Approaches second-order differential equations of physics and engineering from the factorization perspective Includes extensive discussion of coordinate transformations and tensors, complex analysis, fractional calculus, integral transforms, Green's functions, path integrals, and more Extensively reworked to provide increased utility to a broader audience, this book provides a self-contained three-semester course for curriculum, self-study, or reference. As more scientific disciplines begin to lean more heavily on advanced mathematical analysis, this resource will prove to be an invaluable addition to any bookshelf.

Mathematical Methods for Science Students

Author : G. Stephenson
Publisher : Courier Dover Publications
Page : 544 pages
File Size : 16,96 MB
Release : 2020-09-16
Category : Mathematics
ISBN : 0486842851

GET BOOK

Geared toward undergraduates in the physical sciences, this text offers a very useful review of mathematical methods that students will employ throughout their education and beyond. Includes problems, answers. 1973 edition.

Mathematical Methods in the Physical Sciences

Author : Mary L. Boas
Publisher : John Wiley & Sons
Page : 868 pages
File Size : 13,88 MB
Release : 2006
Category : Mathematical physics
ISBN : 9788126508105

GET BOOK

Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.

Perturbation Methods in Applied Mathematics

Author : J. Kevorkian
Publisher : Springer Science & Business Media
Page : 569 pages
File Size : 21,70 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 1475742134

GET BOOK

This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B.

Advanced Mathematical Methods for Scientists and Engineers I

Author : Carl M. Bender
Publisher : Springer Science & Business Media
Page : 616 pages
File Size : 47,4 MB
Release : 1999-10-29
Category : Mathematics
ISBN : 9780387989310

GET BOOK

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.