[PDF] Introduction To Nonlinear Laser Spectroscopy eBook

Introduction To Nonlinear Laser Spectroscopy Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Introduction To Nonlinear Laser Spectroscopy book. This book definitely worth reading, it is an incredibly well-written.

Introduction to Nonlinear Laser Spectroscopy

Author : Marc Levenson
Publisher : Elsevier
Page : 271 pages
File Size : 27,58 MB
Release : 2012-12-02
Category : Science
ISBN : 0323158447

GET BOOK

Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates

Introduction to Nonlinear Laser Spectroscopy 2e

Author : Marc Levenson
Publisher : Elsevier
Page : 317 pages
File Size : 10,80 MB
Release : 2012-12-02
Category : Science
ISBN : 0323156363

GET BOOK

Introduction to Nonlinear Laser Spectroscopy, Revised Edition presents the most useful nonlinear spectroscopy techniques at a level accessible to spectroscopists and graduate students unfamiliar with nonlinear optics. This book discusses the principles of nonlinear laser spectroscopy. Organized into seven chapters, this edition starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the exciting possibilities started by saturated absorption and related techniques, including improved spectroscopic precision, studies of collisional dynamics, and better measurements of fundamental constants and of basic units. Other chapters examine Hamiltonian relaxation, which describes all of the processes that return the ensemble to thermal equilibrium. The final chapter deals with the method of infrared spectrophotography, which combines efficient detection, time resolution, and coherent infrared. Spectroscopists and graduate students will find this book extremely useful.

An Introduction to Laser Spectroscopy

Author : David L. Andrews
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 32,59 MB
Release : 2012-12-06
Category : Science
ISBN : 1461507278

GET BOOK

In the new edition the editors have preserved the basic concept and structure, with the involvement of some new authors - all recognized experts in laser spectroscopy. Each chapter addresses a different technique, providing a review and analysis of the current status, and reporting some of the latest achievements. With the key formulas and methods detailed in many sections, this text represents a practicable handbook of its subject. It will be a valuable tool both for specialists to keep abreast of developments and for newcomers to the field needing an accessible introduction to specific methods of laser spectroscopy - and also as a resource for primary references.

Introduction to Laser Spectroscopy

Author : Halina Abramczyk
Publisher : Elsevier
Page : 331 pages
File Size : 47,96 MB
Release : 2005-05-06
Category : Science
ISBN : 0080455255

GET BOOK

Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology. * A comprehensive course that combines theory and practice * Includes a systematic and comprehensive description for key laser types * Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy

Nonlinear Optics and Laser Spectroscopy

Author : S. C. Abbi
Publisher : Alpha Science Int'l Ltd.
Page : 416 pages
File Size : 17,55 MB
Release : 2001
Category : Science
ISBN : 9788173193545

GET BOOK

This volume begins with a brief up-date of "Laser Sources" and "Spectroscopic Instrumentation and Practice." Non Linear Optics section contains reviews of the fundamental value concerning "Intense Laser Bean Instabilities" and "Atoms and Molecules in Intense Laser Fields" as well as topics of recent interest including Pattern Formation, Optical Phase Conjugation, Solitonic Propagation and Photo-refractive crystals. Laser Spectroscopy section includes a detailed review of Molecular Spectroscopy principles and concise review of Group Theory. Many topics of contemporary interest include Bosonic Effects in Raman Spectroscopy, Resonant Raman Spectroscopy of Low Dimensional Semiconductors, Dynamic Light Scattering Study of Turbulence and Laser Brillouin from Polymeric Gels and Networks. The class-room type coverage of selected topics would encourage young scientists in taking up challenging research projects in areas of Non-linear Optics and Laser Spectroscopy.

Principles of Laser Spectroscopy and Quantum Optics

Author : Paul R. Berman
Publisher : Princeton University Press
Page : 538 pages
File Size : 43,99 MB
Release : 2010-12-13
Category : Science
ISBN : 1400837049

GET BOOK

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)

Laser Spectroscopy and Laser Imaging

Author : Helmut H. Telle
Publisher : CRC Press
Page : 1292 pages
File Size : 20,26 MB
Release : 2018-04-17
Category : Science
ISBN : 1482256932

GET BOOK

"a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" —Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.