[PDF] Genetic Enhancement Of Crops For Tolerance To Abiotic Stress Mechanisms And Approaches Vol I eBook

Genetic Enhancement Of Crops For Tolerance To Abiotic Stress Mechanisms And Approaches Vol I Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Genetic Enhancement Of Crops For Tolerance To Abiotic Stress Mechanisms And Approaches Vol I book. This book definitely worth reading, it is an incredibly well-written.

Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I

Author : Vijay Rani Rajpal
Publisher : Springer
Page : 268 pages
File Size : 48,78 MB
Release : 2019-04-24
Category : Science
ISBN : 3319919563

GET BOOK

Abiotic stresses such as drought (water deficit), extreme temperatures (cold, frost and heat), salinity (sodicity) and mineral (metal and metalloid) toxicity limit productivity of crop plants worldwide and are big threats to global food security. With worsening climate change scenarios, these stresses will further increase in intensity and frequency. Improving tolerance to abiotic stresses, therefore, has become a major objective in crop breeding programs. A lot of research has been conducted on the regulatory mechanisms, signaling pathways governing these abiotic stresses, and cross talk among them in various model and non-model species. Also, various ‘omics’ platforms have been utilized to unravel the candidate genes underpinning various abiotic stresses, which have increased our understanding of the tolerance mechanisms at structural, physiological, transcriptional and molecular level. Further, a wealth of information has been generated on the role of chromatin assembly and its remodeling under stress and on the epigenetic dynamics via histones modifications. The book consolidates outlooks, perspectives and updates on the research conducted by scientists in the abovementioned areas. The information covered in this book will therefore interest workers in all areas of plant sciences. The results presented on multiple crops will be useful to scientists in building strategies to counter these stresses in plants. In addition, students who are beginners in the areas of abiotic stress tolerance will find this book handy to clear their concepts and to get an update on the research conducted in various crops at one place

Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II

Author : Vijay Rani Rajpal
Publisher : Springer
Page : 260 pages
File Size : 27,7 MB
Release : 2019-07-01
Category : Science
ISBN : 3319995731

GET BOOK

The abiotic stresses like drought, temperature, cold, salinity, heavy metals etc. affect a great deal on the yield performance of the agricultural crops. To cope up with these challenges, plant breeding programs world-wide are focussing on the development of stress tolerant varieties in all crop species. Significant genomic advances have been made for abiotic stress tolerance in various crop species in terms of availability of molecular markers, QTL mapping, genome-wide association studies (GWAS), genomic selection (GS) strategies, and transcriptome profiling. The broad-range of articles involving genomics and breeding approaches deepens our existing knowledge about complex traits. The chapters are written by authorities in their respective fields. This book provides comprehensive and consolidated account on the applications of the most recent findings and the progress made in genomics assisted breeding for tolerance to abiotic stresses in many important major crop species with a focus on applications of modern strategies for sustainable agriculture. The book is especially intended for students, molecular breeders and scientists working on the genomics-assisted genetic improvement of crop species for abiotic stress tolerance.

Abiotic Stress Tolerance in Crop Plants

Author : Bidhan Roy
Publisher : New India Publishing
Page : 578 pages
File Size : 31,33 MB
Release : 2009
Category : Science
ISBN : 9788189422943

GET BOOK

Abiotic stresses have become an integral part of crop production. One or other persist either in soil, water or in atmosphere. The information in the areas of injury and tolerant mechanisms, variability for tolerance, breeding and biotechnology for improvement of crop plants against abiotic stresses are lying unorganized in different articles of journals and edited books. This information is presented in this book in organized way with up-to-date citations, which will provide comprehensive literatures of recent advances. More emphasis has been given to elaborate the injury and tolerance mechanisms, and development of improved genotypes against stress environments. This book also deals with the plants' symptoms of particular abiotic stress, reclamation of soil and crop/cropping pattern to over come the effect of adverse condition(s). Each has been laid out with systematic approaches to develop abiotic stress tolerant genotypes using biotechnological tools. Use of molecular markers in stress tolerance and development of transgenic also have been detailed. Air pollution and climate change are the hot topic of the days. Thus, the effect of air pollution and climate change on crop plants have been detailed in the final three s of this book. Under abiotic stress, plant produces a large quantity of free radicals (oxidants), which have been elaborated in a separate 'Oxidative Stress'. This book has been divided into seven major parts- physical stress (salt), water stresses (drought and waterlogging), temperature stresses (heat and cold), metal toxicities (aluminium, iron, cadmium, lead, nickel, chromium, copper, zinc etc) and non-metal toxicities (boron and arsenic), oxidative stress, and finally atmospheric stresses (air pollution, radiation and climate change). Hope, this book will be of greater use for the students and researchers, particularly Plant Breeders and Biotechnologists as well as the Botanists, to understand the injury and tolerance mechanisms, and subsequently improvement of crop genotypes for abiotic stresses.

Plant Abiotic Stress Tolerance

Author : Mirza Hasanuzzaman
Publisher : Springer
Page : 490 pages
File Size : 31,20 MB
Release : 2019-04-04
Category : Science
ISBN : 3030061183

GET BOOK

Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.

Genomic Designing for Abiotic Stress Resistant Oilseed Crops

Author : Chittaranjan Kole
Publisher : Springer Nature
Page : 300 pages
File Size : 38,48 MB
Release : 2022-04-05
Category : Science
ISBN : 3030900444

GET BOOK

This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in oilseed crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The eight chapters each dedicated to a oilseed crop in this volume elucidate on different types of abiotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.

Advances in Rice Research for Abiotic Stress Tolerance

Author : Mirza Hasanuzzaman
Publisher : Woodhead Publishing
Page : 986 pages
File Size : 32,31 MB
Release : 2018-11-12
Category : Business & Economics
ISBN : 0128143339

GET BOOK

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world’s population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology

Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses

Author : Monica Boscaiu
Publisher : MDPI
Page : 488 pages
File Size : 26,26 MB
Release : 2020-12-02
Category : Science
ISBN : 3039434586

GET BOOK

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.

Drought Stress Tolerance in Plants, Vol 2

Author : Mohammad Anwar Hossain
Publisher : Springer
Page : 616 pages
File Size : 14,20 MB
Release : 2016-08-24
Category : Technology & Engineering
ISBN : 3319324233

GET BOOK

Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.

Plant Breeding for Abiotic Stress Tolerance

Author : Roberto Fritsche-Neto
Publisher : Springer Science & Business Media
Page : 178 pages
File Size : 19,91 MB
Release : 2012-06-05
Category : Science
ISBN : 3642305539

GET BOOK

The rapid population growth and the increase in the per capita income, especially in the group of emerging countries referred to as BRIC countries (Brazil, Russia, India, China and South Africa) has created huge pressure for the expansion of the agricultural growing area and the crop yields to meet the rising demand. As a result, many areas that have been considered marginal for growing crops, due to their low fertility, drought, salinity, and many other abiotic stresses, have now been incorporated in the production system. Additionally, climate change has brought new challenges to agriculture to produce food, feed, fiber and biofuels. To cope with these new challenges, many plant breeding programs have reoriented their breeding scope to stress tolerance in the last years. The authors of this book have collected the most recent advances and discoveries applied to breeding for abiotic stresses in this book, starting with new physiological concepts and breeding methods, and moving on to discuss modern molecular biological approaches geared to the development of improved cultivars tolerant to most sorts of abiotic stress. Written in an easy to understand style, this book is an excellent reference work for students, scientists and farmers interested in learning how to breed for abiotic stresses scenarios, presenting the state-of-the-art in plant stresses and allowing the reader to develop a greater understanding of the basic mechanisms of tolerance to abiotic stresses and how to breed for them.

Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering

Author : Joe H. Cherry
Publisher : Springer Science & Business Media
Page : 356 pages
File Size : 36,96 MB
Release : 2012-12-06
Category : Science
ISBN : 9401143234

GET BOOK

Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.