[PDF] Frequency Domain Analysis And Design Of Distributed Control Systems eBook

Frequency Domain Analysis And Design Of Distributed Control Systems Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Frequency Domain Analysis And Design Of Distributed Control Systems book. This book definitely worth reading, it is an incredibly well-written.

Frequency-Domain Analysis and Design of Distributed Control Systems

Author : Yu-Ping Tian
Publisher : John Wiley & Sons
Page : 245 pages
File Size : 25,7 MB
Release : 2012-08-24
Category : Science
ISBN : 0470828234

GET BOOK

This book presents a unified frequency-domain method for the analysis of distributed control systems. The following important topics are discussed by using the proposed frequency-domain method: (1) Scalable stability criteria of networks of distributed control systems; (2) Effect of heterogeneous delays on the stability of a network of distributed control system; (3) Stability of Internet congestion control algorithms; and (4) Consensus in multi-agent systems. This book is ideal for graduate students in control, networking and robotics, as well as researchers in the fields of control theory and networking who are interested in learning and applying distributed control algorithms or frequency-domain analysis methods.

Discontinuous Control Systems

Author : Igor Boiko
Publisher : Springer Science & Business Media
Page : 217 pages
File Size : 21,23 MB
Release : 2008-11-18
Category : Technology & Engineering
ISBN : 0817647538

GET BOOK

This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.

Designing Distributed Control Systems

Author : Veli-Pekka Eloranta
Publisher : John Wiley & Sons
Page : 516 pages
File Size : 47,83 MB
Release : 2014-06-09
Category : Computers
ISBN : 1118694155

GET BOOK

Designing Distributed Control Systems presents 80 patterns for designing distributed machine control system software architecture (forestry machinery, mining drills, elevators, etc.). These patterns originate from state-of-the-art systems from market-leading companies, have been tried and tested, and will address typical challenges in the domain, such as long lifecycle, distribution, real-time and fault tolerance. Each pattern describes a separate design problem that needs to be solved. Solutions are provided, with consequences and trade-offs. Each solution will enable piecemeal growth of the design. Finding a solution is easy, as the patterns are divided into categories based on the problem field the pattern tackles. The design process is guided by different aspects of quality, such as performance and extendibility, which are included in the pattern descriptions. The book also contains an example software architecture designed by leading industry experts using the patterns in the book. The example system introduces the reader to the problem domain and demonstrates how the patterns can be used in a practical system design process. The example architecture shows how useful a toolbox the patterns provide for both novices and experts, guiding the system design process from its beginning to the finest details. Designing distributed machine control systems with patterns ensures high quality in the final product. High-quality systems will improve revenue and guarantee customer satisfaction. As market need changes, the desire to produce a quality machine is not only a primary concern, there is also a need for easy maintenance, to improve efficiency and productivity, as well as the growing importance of environmental values; these all impact machine design. The software of work machines needs to be designed with these new requirements in mind. Designing Distributed Control Systems presents patterns to help tackle these challenges. With proven methodologies from the expert author team, they show readers how to improve the quality and efficiency of distributed control systems.

Frequency Domain Techniques for H? Control of Distributed Parameter Systems

Author : Hitay Ozbay
Publisher : SIAM
Page : 200 pages
File Size : 29,55 MB
Release : 2018-10-09
Category : Technology & Engineering
ISBN : 1611975395

GET BOOK

This book presents new computational tools for the H? control of distributed parameter systems in which transfer functions are considered as input-output descriptions for the plants to be controlled. The emphasis is on the computation of the controller parameters and reliable implementation. The authors present recent studies showing that the simplified skew-Toeplitz method is applicable to a wide class of systems, supply detailed examples from systems with time delays and various engineering applications, and discuss reliable implementation of the controller, complemented by a software based on MATLAB. Frequency Domain Techniques for H? Control of Distributed Parameter Systems is intended for advanced undergraduate and early graduate students interested in robust control of distributed parameter systems?time delay systems?as well as researchers and engineers working in related fields. It can be used in the following courses: Introduction to Robust Control with Applications to Distributed Parameter Systems and Introduction to Robust Control with Applications to Time Delay Systems.

Feedback Control Theory

Author : John C. Doyle
Publisher : Courier Corporation
Page : 264 pages
File Size : 35,81 MB
Release : 2013-04-09
Category : Technology & Engineering
ISBN : 0486318338

GET BOOK

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.

Optimal Design of Distributed Control and Embedded Systems

Author : Arben Çela
Publisher : Springer Science & Business Media
Page : 297 pages
File Size : 28,74 MB
Release : 2013-11-29
Category : Technology & Engineering
ISBN : 3319027298

GET BOOK

Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The authors also operate a control structure modification or a control switching based on a thorough analysis of the influence of the induced time-delay system influence on stability and system performance in order to optimize DCES performance in case of calculation and communication resource limitations. Although the richness and variety of classes of DCES preclude a completely comprehensive treatment or a single “best” method of approaching them all, this co-design approach has the best chance of rendering this problem feasible and finding the optimal or some sub-optimal solution. The text is rounded out with references to such applications as car suspension and unmanned vehicles. Optimal Design of Distributed Control and Embedded Systems will be of most interest to academic researchers working on the mathematical theory of DCES but the wide range of environments in which they are used also promotes the relevance of the text for control practitioners working in the avionics, automotive, energy-production, space exploration and many other industries.