[PDF] Fluid Characterization At The Cranfield Co2 Injection Site eBook

Fluid Characterization At The Cranfield Co2 Injection Site Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Fluid Characterization At The Cranfield Co2 Injection Site book. This book definitely worth reading, it is an incredibly well-written.

Fluid Characterization at the Cranfield CO2 Injection Site

Author : Russell Wirkus Carter
Publisher :
Page : 0 pages
File Size : 47,93 MB
Release : 2014
Category :
ISBN :

GET BOOK

This dissertation focuses on quantitatively interpreting the elastic properties of the Cranfield reservoir for CO2 saturation. In this work, quantitative interpretation starts by examining the relationship between CO2 saturation and the elastic properties of the reservoir. This relationship comes from a rock-physics model calibrated to measured well data. Seismic data can then be inverted using a model for CO2 saturation and rock-property estimates. The location and saturation of injected CO2 are important metrics for monitoring the long-term effectiveness of carbon capture utilization and storage. Non-uniform CO2 saturation is a contributing factor to both lateral and time-lapse changes in the elastic properties of the Cranfield reservoir. In the Cranfield reservoir, CO2 saturation and porosity can be estimated from the ratio of P-wave velocity (Vp) to S-wave velocity (Vs) and P-impedance (Ip), respectively. Lower values of Ip for a given rock matrix often correlate to higher porosity. Similarly, for a given area of the reservoir, lower Vp/Vs frequently can be associated with higher CO2 saturation. If a constant porosity from the baseline to the time-lapse survey is assumed, changes in Ip over time can be attributed to changes in CO2 saturation in lieu of using Vp/Vs. Decreases in Ip between the baseline and time-lapse survey can be attributed to increases in CO2 saturation. With a rock-physics model calibrated to the reservoir, Ip and Is from a vertical seismic profile were correlated to statistical ranges of porosity and CO2 saturations. To expand the lateral interpretation of reservoir porosity and CO2 saturation, the time-variant changes in Ip between baseline and time-lapse surface seismic datasets were compared to changes in CO2 saturation calculated from the rock-physics model. Characterizing the CO2 saturation of the Tuscaloosa sandstones helped to establish a workflow for estimating reservoir properties and fluid saturation from multiple types of geophysical data. Additionally, this work helped establish an understanding for how CO2 injected into a reservoir alters and changes the elastic properties of the reservoir and the degree to which those changes can be detected using geophysical methods.

Geophysical Monitoring for Geologic Carbon Storage

Author : Lianjie Huang
Publisher : John Wiley & Sons
Page : 468 pages
File Size : 50,41 MB
Release : 2022-03-09
Category : Science
ISBN : 111915684X

GET BOOK

Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Science of Carbon Storage in Deep Saline Formations

Author : Pania Newell
Publisher : Elsevier
Page : 447 pages
File Size : 16,2 MB
Release : 2018-09-06
Category : Science
ISBN : 0128127538

GET BOOK

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage. Includes the underlying scientific research, as well as the risks associated with geological carbon storage Covers the topic of geological carbon storage from various disciplines, addressing the multi-scale and multi-physics aspects of geological carbon storage Organized by discipline for ease of navigation

Geophysics and Geosequestration

Author : Thomas L. Davis
Publisher : Cambridge University Press
Page : 391 pages
File Size : 17,59 MB
Release : 2019-05-09
Category : Business & Economics
ISBN : 1107137497

GET BOOK

An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.

Monitoring CO2 Storage at Cranfield, Mississippi with Time-Lapse Offset VSP {u2013} Using Integration and Modeling to Reduce Uncertainty

Author :
Publisher :
Page : 9 pages
File Size : 39,44 MB
Release : 2014
Category :
ISBN :

GET BOOK

A time-lapse Offset Vertical Seismic Profile (OVSP) data set was acquired as part of a subsurface monitoring program for geologic sequestration of CO2. The storage site at Cranfield, near Natchez, Mississippi, is part of a detailed area study (DAS) site for geologic carbon sequestration operated by the U.S. Dept. of Energy’s Southeast Regional Carbon Sequestration Partnership (SECARB). The DAS site includes three boreholes, an injection well and two monitoring wells. The project team selected the DAS site to examine CO2 sequestration multiphase fluid flow and pressure at the interwell scale in a brine reservoir. The time-lapse (TL) OVSP was part of an integrated monitoring program that included well logs, crosswell seismic, electrical resistance tomography and 4D surface seismic. The goals of the OVSP were to detect the CO2 induced change in seismic response, give information about the spatial distribution of CO2 near the injection well and to help tie the high-resolution borehole monitoring to the 4D surface data. The VSP data were acquired in well CFU 31-F1, which is the 3̃200 m deep CO2 injection well at the DAS site. A preinjection survey was recorded in late 2009 with injection beginning in December 2009, and a post injection survey was conducted in Nov 2010 following injection of about 250 kT of CO2. The sensor array for both surveys was a 50-level, 3-component, Sercel MaxiWave system with 15 m (49 ft) spacing between levels. The source for both surveys was an accelerated weight drop, with different source trucks used for the two surveys. Consistent time-lapse processing was applied to both data sets. Time-lapse processing generated difference corridor stacks to investigate CO2 induced reflection amplitude changes from each source point. Corridor stacks were used for amplitude analysis to maximize the signal-to-noise ratio (S/N) for each shot point. Spatial variation in reflectivity (used to ‘map’ the plume) was similar in magnitude to the corridor stacks but, due to relatively lower S/N, the results were less consistent and more sensitive to processing and therefore are not presented. We examined the overall time-lapse repeatability of the OVSP data using three methods, the NRMS and Predictability (Pred) measures of Kragh and Christie (2002) and the signal-to-distortion ratio (SDR) method of Cantillo (2011). Because time-lapse noise was comparable to the observed change, multiple methods were used to analyze data reliability. The reflections from the top and base reservoir were identified on the corridor stacks by correlation with a synthetic response generated from the well logs. A consistent change in the corridor stack amplitudes from pre- to post-CO2 injection was found for both the top and base reservoir reflections on all ten shot locations analyzed. In addition to the well-log synthetic response, a finite-difference elastic wave propagation model was built based on rock/fluid properties obtained from well logs, with CO2 induced changes guided by time-lapse crosswell seismic tomography (Ajo-Franklin, and others, 2013) acquired at the DAS site. Time-lapse seismic tomography indicated that two reservoir zones were affected by the flood. The modeling established that interpretation of the VSP trough and peak event amplitudes as reflectivity from the top and bottom of reservoir is appropriate even with possible tuning effects. Importantly, this top/base change gives confidence in an interpretation that these changes arise from within the reservoir, not from bounding lithology. The modeled time-lapse change and the observed field data change from 10 shotpoints are in agreement for both magnitude and polarity of amplitude change for top and base of reservoir. Therefore, we conclude the stored CO2 has been successfully detected and, furthermore, the observed seismic reflection change can be applied to Cranfield’s ...

Fluid Flow in Fractured Porous Media

Author : Richeng Liu
Publisher : MDPI
Page : 578 pages
File Size : 20,82 MB
Release : 2019-09-30
Category : Technology & Engineering
ISBN : 3039214233

GET BOOK

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Geochemistry of Geologic CO2 Sequestration

Author : Donald J. DePaolo
Publisher : Walter de Gruyter GmbH & Co KG
Page : 556 pages
File Size : 22,77 MB
Release : 2018-12-17
Category : Science
ISBN : 1501508075

GET BOOK

Volume 77 of Reviews in Mineralogy and Geochemistry focuses on important aspects of the geochemistry of geological CO2 sequestration. It is in large part an outgrowth of research conducted by members of the U.S. Department of Energy funded Energy Frontier Research Center (EFRC) known as the Center for Nanoscale Control of Geologic CO2 (NCGC). Eight out of the 15 chapters have been led by team members from the NCGC representing six of the eight partner institutions making up this center - Lawrence Berkeley National Laboratory (lead institution, D. DePaolo - PI), Oak Ridge National Laboratory, The Ohio State University, the University of California Davis, Pacific Northwest National Laboratory, and Washington University, St. Louis.

Geological Carbon Storage

Author : Stéphanie Vialle
Publisher : John Wiley & Sons
Page : 372 pages
File Size : 46,98 MB
Release : 2018-11-15
Category : Science
ISBN : 1119118670

GET BOOK

Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field. Book Review: William R. Green, Patrick Taylor, Sven Treitel, and Moritz Fliedner, (2020), "Reviews," The Leading Edge 39: 214–216 Geological Carbon Storage: Subsurface Seals and Caprock Integrity, edited by Stéphanie Vialle, Jonathan Ajo-Franklin, and J. William Carey, ISBN 978-1-119-11864-0, 2018, American Geophysical Union and Wiley, 364 p., US$199.95 (print), US$159.99 (eBook). This volume is a part of the AGU/Wiley Geophysical Monograph Series. The editors assembled an international team of earth scientists who present a comprehensive approach to the major problem of placing unwanted and/or hazardous fluids beneath a cap rock seal to be impounded. The compact and informative preface depicts the nature of cap rocks and the problems that may occur over time or with a change in the formation of the cap rock. I have excerpted a quote from the preface that describes the scope of the volume in a concise and thorough matter. “Caprocks can be defined as a rock that prevents the flow of a given fluid at certain temperature, pressure, and chemical conditions. ... A fundamental understanding of these units and of their evolution over time in the context of subsurface carbon storage is still lacking.” This volume describes the scope of current research being conducted on a global scale, with 31 of the 83 authors working outside of the United States. The studies vary but can be generalized as monitoring techniques for cap rock integrity and the consequence of the loss of that integrity. The preface ends by calling out important problems that remain to be answered. These include imaging cap rocks in situ, detecting subsurface leaks before they reach the surface, and remotely examining the state of the cap rock to avert any problems. Chapter 3 describes how newer methods are used to classify shale. These advanced techniques reveal previously unknown microscopic properties that complicate classification. This is an example of the more we know, the more we don't know. A sedimentologic study of the formation of shale (by far the major sedimentary rock and an important rock type) is described in Chapter 4. The authors use diagrammatic examples to illustrate how cap rocks may fail through imperfect seal between the drill and wall rock, capillary action, or a structural defect (fault). Also, the shale pore structures vary in size, and this affects the reservoir. There are descriptions of the pore structure in the Eagle Ford and Marcellus shales and several others. Pore structures are analyzed using state-of-the-art ultra-small-angle X-ray or neutron scattering. They determine that the overall porosity decreases nonlinearly with time. There are examples of cap rock performance under an array of diagnostic laboratory analyses and geologic field examples (e.g., Marcellus Formation). The importance of the sequestration of CO2 and other contaminants highlights the significance of this volume. The previous and following chapters illuminate the life history of the lithologic reservoir seal. I would like to call out Chapter 14 in which the authors illustrate the various mechanisms by which a seal can fail and Chapter 15 in which the authors address the general problems of the effect of CO2 sequestration on the environment. They establish a field test, consisting of a trailer and large tank of fluids with numerous monitoring instruments to replicate the effect of a controlled release of CO2-saturated water into a shallow aquifer. This chapter's extensive list of references will be of interest to petroleum engineers, rock mechanics, and environmentalists. The authors of this volume present a broad view of the underground storage of CO2. Nuclear waste and hydrocarbons are also considered for underground storage. There are laboratory, field, and in situ studies covering nearly all aspects of this problem. I cannot remember a study in which so many different earth science resources were applied to a single problem. The span of subjects varies from traditional geochemical analysis with the standard and latest methods in infrared and X-ray techniques, chemical and petroleum engineering, sedimentary mineralogy, hydrology, and geomechanical studies. This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures. Each chapter should have at least two color figures, or there should be several pages of color figures bound in the center of the volume. Many of the figures would be more meaningful if they had been rendered in color. Also, the acronyms are defined in the individual chapters, but it would be helpful to have a list of acronyms after the extensive index. I recommend this monograph to all earth scientists but especially petroleum engineers, structural geologists, mineralogists, and environmental scientists. Since these chapters cover a broad range of studies, it would be best if the reader has a broad background. — Patrick Taylor Davidsonville, Maryland

Time-lapse Seismic Monitoring for Enhanced Oil Recovery and Carbon Capture and Storage Field Site at the Cranfield Field, Mississippi

Author : Julie Nicole Ditkof
Publisher :
Page : 222 pages
File Size : 32,65 MB
Release : 2013
Category :
ISBN :

GET BOOK

The Cranfield field, located in southwest Mississippi, is an enhanced oil recovery and carbon sequestration project that has been under a continuous supercritical CO2 injection by Denbury Onshore LLC since 2008. Two 3D seismic surveys were collected in 2007, pre-CO2 injection, and in 2010 after > 2 million tons of CO2 was injected into the subsurface. The goal of this study is to characterize a time-lapse response between two seismic surveys to understand where injected CO2 is migrating and to map the injected CO2 plume edge. In order to characterize a time-lapse response, the seismic surveys were cross equalized using a trace-by-trace time shift. A normalized root-mean-square (NRMS) difference value was then calculated to determine the repeatability of the data. The data were considered to have "good repeatability," so a difference volume was calculated and showed a coherent seismic amplitude anomaly located through the area of interest. A coherent seismic amplitude anomaly was also present below the area of interest, so a time delay analysis was performed and calculated a significant added velocity change. A Gassmann-Wood fluid substitution workflow was then performed at two well locations to predict a saturation profile and observe post-injection expected changes in compressional velocity values at variable CO2 saturations. Finally, acoustic impedance inversions were performed on the two seismic surveys and an acoustic impedance difference volume was calculated to compare with the fluid substitution results. The Gassmann-Wood fluid substitution results predicted smaller changes in acoustic impedance than those observed from acoustic impedance inversions. At the Cranfield field, time-lapse seismic analysis was successful in mapping and quantifying the acoustic impedance change for some seismic amplitude anomalies associated with injected CO2. Additional well log data and refinement of the fluid substitution workflow and the model-based inversion performed is necessary to obtain more accurate impedance changes throughout the field instead of at a single well location.