[PDF] Dynamic Earth Pressures Against Retaining Structures eBook

Dynamic Earth Pressures Against Retaining Structures Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of Dynamic Earth Pressures Against Retaining Structures book. This book definitely worth reading, it is an incredibly well-written.

Analysis and Design of Retaining Structures Against Earthquakes

Author : Shamsher Prakash
Publisher :
Page : 148 pages
File Size : 24,15 MB
Release : 1996
Category : Technology & Engineering
ISBN :

GET BOOK

GSP 60 contains eight papers on retaining structures to withstand earthquakes presented at sessions of the ASCE National Convention, held in Washington, D.C., November 10-14, 1996.

Seismic Earth Pressures on Retaining Structures and Basement Walls in Cohesionless Soils

Author : Roozbeh Geraili Mikola
Publisher :
Page : 370 pages
File Size : 34,14 MB
Release : 2012
Category :
ISBN :

GET BOOK

Observations of the performance of basement walls and retaining structures in recent earthquakes show that failures of basement or deep excavation walls in earthquakes are rare even if the structures were not designed for the actual magnitude of the earthquake loading. Failures of retaining structures are most commonly confined to waterfront structures retaining saturated backfill with liquefaction being the critical factor in the failures. Failures of other types of retaining structures are relatively rare and usually involve a more complex set of conditions, such as sloping ground either above or below the retaining structure, or both. While some failures have been observed, there is no evidence of a systemic problem with traditional static retaining wall design even under quite severe loading conditions. No significant damage or failures of retaining structures occurred in the recent earthquakes such as Wenchuan earthquake in China (200) and, or subduction zone generated earthquakes in Chile (2010) and Japan (2011). Therefore, this experimental and analytical study was undertaken to develop a better understanding of the distribution and magnitude of seismic earth pressures on cantilever retaining structures. The experimental component of the study consists of two sets of dynamic centrifuge model experiments. In the first experiment two model structures representing basement type setting were used, while in the second test a U-shaped channel with cantilever sides and a simple cantilever wall were studied. All of these structures were chosen to be representative of typical designs. Dry medium-dense sand with relative density on the order of from 75% to 80% was used as backfill. Results obtained from the centrifuge experiments were subsequently used to develop and calibrate a two-dimensional, nonlinear, finite difference model built on the FLAC platform. The centrifuge data consistently shows that for the height of structures considered herein, i.e. in the range of 20-30 ft, the maximum dynamic earth pressure increases with depth and can be reasonably approximated by a triangular distribution This suggests that the point of application of the resultant force of the dynamic earth pressure increment is approximately 1/3H above the base of the wall as opposed to 0.5-0.6 H recommended by most current design procedures. In general, the magnitude of the observed seismic earth pressures depends on the magnitude and intensity of shaking, the density of the backfill soil, and the type of the retaining structures. The computed values of seismic earth pressure coefficient (delta Kae) back calculated from the centrifuge data at the time of maximum dynamic wall moment suggest that for free standing cantilever retaining structures seismic earth pressures can be neglected at accelerations below 0.4 g. While similar conclusions and recommendations were made by Seed and Whitman (1970), their approach assumed that a wall designed to a reasonable static factor of safety should be able to resist seismic loads up 0.3 g. In the present study, experimental data suggest that seismic loads up to 0.4 g could be resisted by cantilever walls designed to an adequate factor of safety. This observation is consistent with the observations and analyses performed by Clough and Fragaszy (1977) and Fragaszy and Clough (1980) and Al-Atik and Sitar (2010) who concluded that conventionally designed cantilever walls with granular backfill could be reasonably expected to resist seismic loads at accelerations up to 0.4 g. Finally, numerical models using FLAC finite difference code were quite successful and able to produce a reasonably good agreement with the results of the centrifuge experiments. However, while the finite difference models were able to capture the main aspects of the seismic response observed in the centrifuge experiments, the results of the analyses were highly sensitive to the selection of soil and interface parameters. Therefore, numerical models used for future designs should be carefully calibrated against experimental data in order to provide reliable results.

Rigidly Framed Earth Retaining Structures

Author : Walid Aboumoussa
Publisher : Springer
Page : 329 pages
File Size : 37,64 MB
Release : 2014-06-23
Category : Technology & Engineering
ISBN : 3642546439

GET BOOK

Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories. Additionally, a nearly perpetual lateral displacement away from the retained soil mass may occur at the free end of the RFERS leading to unacceptable serviceability problems. These results suggest that reinforced concrete structures designed for the flexural stresses imposed by the backfill soil will be inadequately reinforced to resist stresses produced during the expansion cycles. Parametric studies of single and multi-story RFERS with varying geometries and properties are also presented to investigate the effects of structural stiffness on the displacement of RFERS and the lateral earth pressure developed in the soil mass. These studies can aid the reader in selecting appropriate values of lateral earth pressure for the design of RFERS. Finally, simplified closed form equations that can be used to predict the lateral drift of RFERS are presented. KEY WORDS: Earth Pressure; Soil-Structure Interaction; Mechanics; Failure; Distress; Temperature; Thermal Effects; Concrete; Coefficient of Thermal Expansion; Segmental Bridges; Jointless Bridges; Integral Bridges; Geotechnical Instrumentation; Finite Element Modeling; FEM; Numerical Modeling.

Earth Pressure and Earth-Retaining Structures

Author : Chris R.I. Clayton
Publisher : CRC Press
Page : 598 pages
File Size : 46,86 MB
Release : 2014-05-28
Category : Architecture
ISBN : 1482206617

GET BOOK

Effectively Calculate the Pressures of SoilWhen it comes to designing and constructing retaining structures that are safe and durable, understanding the interaction between soil and structure is at the foundation of it all. Laying down the groundwork for the non-specialists looking to gain an understanding of the background and issues surrounding g