[PDF] A Box Integration Weno Solver For The Boltzmann Transport Equation Its Application To High Speed Heterojunction Bipolar Transistors eBook

A Box Integration Weno Solver For The Boltzmann Transport Equation Its Application To High Speed Heterojunction Bipolar Transistors Book in PDF, ePub and Kindle version is available to download in english. Read online anytime anywhere directly from your device. Click on the download button below to get a free pdf file of A Box Integration Weno Solver For The Boltzmann Transport Equation Its Application To High Speed Heterojunction Bipolar Transistors book. This book definitely worth reading, it is an incredibly well-written.

A Box-Integration/Weno Solver for the Boltzmann Transport Equation Its Application to High-Speed Heterojunction Bipolar Transistors

Author : Gerald Wedel
Publisher :
Page : 272 pages
File Size : 23,85 MB
Release : 2017-08-08
Category :
ISBN : 9783744873727

GET BOOK

The ongoing trend for high-frequency (HF) applications drives the development of high-speed devices. Therefore, trustworthy device simulations are inevitable for understanding and designing future HF devices. During the last decade, the predictive capabilities of Drift-Diffusion (DD) and Hydrodynamic (HD) transport models turned out to be insufficient for state-of-the-art high-frequency transistors. Consequently, a more physics based transport model helps to counter these issues and thus, the Boltzmann transport equation (BTE) comes into focus. In this thesis, a deterministic solution method for the BTE is pursued. First, physical fundamentals and mathematical preconsiderations for the treatment of the BTE are reviewed. This covers the calculation of band structures/dispersion relations, an overview of scattering mechanisms and a detailed description of the coordinate transformations required for analyzing prominent semiconducting materials, such as Silicon-Germanium and III-V compounds, like Indium-Phosphide. The second part focuses on the numerical treatment of the BTE. Besides the employed normalization strategy, the discretization of the BULK BTE is described in detail. Based on the latter, the extensions for the device BTE are specified. A method for the direct calculation of stationary BTE solutions - for the BULK and device case - is introduced and an overview of the WENO method is outlined. The third part is dedicated to the applications of the deterministic solution method and simulation results of the BTE. Recipes for calculating the most important quantities, like current/electron densities, are given. Simulation results for the BULK case and for hetero-junction bipolar transistors are presented and analyzed. Here, the focus is put on both Silicon/Silicon-Germanium and Indium-Phosphide/Indium-Gallium-Arsenide material systems. The part is concluded by a critical review on the current field of application. A summary and an outlook on future extensions

Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications

Author : Niccolò Rinaldi
Publisher : CRC Press
Page : 377 pages
File Size : 43,27 MB
Release : 2022-09-01
Category : Technology & Engineering
ISBN : 1000794407

GET BOOK

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.

Performance prediction of a future SiGe HBT technology using a heterogeneous set of simulation tools and approaches

Author : Tommy Rosenbaum
Publisher : BoD – Books on Demand
Page : 266 pages
File Size : 29,55 MB
Release : 2017-03-10
Category : Technology & Engineering
ISBN : 3743134268

GET BOOK

Bipolar complementary metal-oxide-semiconductor (BiCMOS) processes can be considered as the most general solution for RF products, as they combine the mature manufacturing tools of CMOS with the speed and drive capabilities of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). HBTs in turn are major contenders for partially filling the terahertz gap, which describes the range in which the frequencies generated by transistors and lasers do not overlap (approximately 0.3 THz to 30 THz). To evaluate the capabilities of such future devices, a reliable prediction methodology is desirable. Using a heterogeneous set of simulation tools and approaches allows to achieve this goal successively and is beneficial for troubleshooting. Various scientific fields are combined, such as technology computer-aided design (TCAD), compact modeling and parameter extraction. To create a foundation for the simulation environment and to ensure reproducibility, the used material models of the hydrodynamic and drift-diffusion approaches are introduced in the beginning of this thesis. The physical models are mainly based on literature data of Monte Carlo (MC) or deterministic simulations of the Boltzmann transport equation (BTE). However, the TCAD deck must be calibrated on measurement data too for a reliable performance prediction of HBTs. The corresponding calibration approach is based on measurements of an advanced SiGe HBT technology for which a technology-specific parameter set of the HICUM/L2 compact model is extracted for the high-speed, medium-voltage and high-voltage transistor versions. With the help of the results, one-dimensional transistor characteristics are generated that serve as reference for the doping profile and model calibration. By performing elaborate comparisons between measurement-based reference data and simulations, the thesis advances the state-of-the-art of TCAD-based predictions and proofs the feasibility of the approach. Finally, the performance of a future technology in 28 nm is predicted by applying the heterogeneous methodology. On the basis of the TCAD results, bottlenecks of the technology are identified.

Deterministic Solvers for the Boltzmann Transport Equation

Author : Sung-Min Hong
Publisher : Springer Science & Business Media
Page : 235 pages
File Size : 31,73 MB
Release : 2011-07-31
Category : Technology & Engineering
ISBN : 3709107784

GET BOOK

The book covers all aspects from the expansion of the Boltzmann transport equation with harmonic functions to application to devices, where transport in the bulk and in inversion layers is considered. The important aspects of stabilization and band structure mapping are discussed in detail. This is done not only for the full band structure of the 3D k-space, but also for the warped band structure of the quasi 2D hole gas. Efficient methods for building the Schrödinger equation for arbitrary surface or strain directions, gridding of the 2D k-space and solving it together with the other two equations are presented.

Direct and Inverse Problems in Wave Propagation and Applications

Author : Ivan Graham
Publisher : Walter de Gruyter
Page : 328 pages
File Size : 28,45 MB
Release : 2013-10-14
Category : Mathematics
ISBN : 3110282283

GET BOOK

This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.

Mathematical and Computational Modeling

Author : Roderick Melnik
Publisher : John Wiley & Sons
Page : 321 pages
File Size : 18,26 MB
Release : 2015-05-18
Category : Mathematics
ISBN : 1118853989

GET BOOK

Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.

Multigroup Equations for the Description of the Particle Transport in Semiconductors

Author : Martin Galler
Publisher : World Scientific
Page : 247 pages
File Size : 15,24 MB
Release : 2005
Category : Philosophy
ISBN : 9812563555

GET BOOK

Deterministic simulation of the particle transport in semiconductor devices is an interesting alternative to the common Monte Carlo approach. In this book, a state-of-the-art technique called the multigroup approach is presented and applied to a variety of transport problems in bulk semiconductors and semiconductor devices. High-field effects as well as hot-phonon phenomena in polar semiconductors are studied in detail. The mathematical properties of the presented numerical method are studied, and the method is applied to simulating the transport of a two-dimensional electron gas formed at a semiconductor heterostructure. Concerning semiconductor device simulation, several diodes and transistors fabricated of silicon and gallium arsenide are investigated. For all of these simulations, the numerical techniques employed are discussed in detail.This unique study of the application of direct methods for semiconductor device simulation provides the interested reader with an indispensable reference on this growing research area.

Perspectives in Flow Control and Optimization

Author : Max D. Gunzburger
Publisher : SIAM
Page : 273 pages
File Size : 12,84 MB
Release : 2003-01-01
Category : Science
ISBN : 089871527X

GET BOOK

Introduces several approaches for solving flow control and optimization problems through the use of modern methods.

Simulation of Semiconductor Devices and Processes

Author : Siegfried Selberherr
Publisher : Springer Science & Business Media
Page : 525 pages
File Size : 15,57 MB
Release : 2012-12-06
Category : Computers
ISBN : 3709166578

GET BOOK

The "Fifth International Conference on Simulation of Semiconductor Devices and Processes" (SISDEP 93) continues a series of conferences which was initiated in 1984 by K. Board and D. R. J. Owen at the University College of Wales, Swansea, where it took place a second time in 1986. Its organization was succeeded by G. Baccarani and M. Rudan at the University of Bologna in 1988, and W. Fichtner and D. Aemmer at the Federal Institute of Technology in Zurich in 1991. This year the conference is held at the Technical University of Vienna, Austria, September 7 - 9, 1993. This conference shall provide an international forum for the presentation of out standing research and development results in the area of numerical process and de vice simulation. The miniaturization of today's semiconductor devices, the usage of new materials and advanced process steps in the development of new semiconduc tor technologies suggests the design of new computer programs. This trend towards more complex structures and increasingly sophisticated processes demands advanced simulators, such as fully three-dimensional tools for almost arbitrarily complicated geometries. With the increasing need for better models and improved understand ing of physical effects, the Conference on Simulation of Semiconductor Devices and Processes brings together the simulation community and the process- and device en gineers who need reliable numerical simulation tools for characterization, prediction, and development.

The Monte Carlo Method for Semiconductor Device Simulation

Author : Carlo Jacoboni
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 29,74 MB
Release : 1989-10-30
Category : Technology & Engineering
ISBN : 9783211821107

GET BOOK

This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.